An untargeted metabolomics approach to ultra high field MRS in spinocerebellar ataxia

Uzay Emrah Emir1,2, Margarida Julià-Sapé3, Peter Jezzard1, Diane Hutter2, Khalaf O Bushara2, and Gulin Oz2

1FMRIB Centre, University of Oxford, Oxford, United Kingdom, 2University of Minnesota, Minneapolis, Minnesota, United States, 3Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

Introduction
The translation of metabolomics NMR approaches to molecular medicine into in vivo 1H MRS allows automatic analysis of unresolved in vivo spectra by utilizing pattern recognition processes and machine learning methods (1). Unlike the commonly used MRS quantification tools, untargeted metabolomics approaches do not require any prior knowledge and have been successfully implemented at clinical field strengths (≤ 3T) to identify the characteristic spectral features associated with brain tumors (2) and multiple sclerosis (3). However, the use of untargeted metabolomics approaches at clinical field strengths is limited by insufficient sensitivity and spectral resolution. The advent of ultra-high field (UHF > 3T) MR has improved both sensitivity and resolution of in vivo 1H MRS, thereby UHF may facilitate the utilization of untargeted metabolomics approaches to analyze in vivo 1H spectra. In this study, we explored the utility of untargeted metabolomics approaches to distinguish subjects with a movement disorder (spinocerebellar ataxia type 1 (SCA1)) from controls and the potential benefits of 7T relative to 3T for this analytic approach.

Methods
Fourteen individuals with early-moderate SCA1 (age 52 ± 11 years, mean ± SD, Scale for the Assessment and Rating of Ataxia (SARA) score (4) = 10 ± 2) and 22 age-matched healthy volunteers (55 ± 16 years, SARA = 0.1 ± 0.2) were studied. Measurements were performed on a clinical 3T (Siemens TIM Trio) scanner and 7T scanner (Siemens). A quadrature transmit surface coil inserted into a 12 channel receive array or a 32 channel receive array with body coil excitation were used at 3T. A 16-channel transceive array coil (5) and B0 phase shimming (6) were used at 7T. Spectra were acquired from the cerebellar hemisphere (17° x 17° x 17 mm) using a semi-LASER sequence (TR=5s, TE=26-28ms, NEX=64) (7). Eddy current correction, reconstruction, zero-order phasing of array coil spectra were carried out by using a reference water spectrum acquired from the same VOI. The residual water resonance was removed using the Hankel-Lanczos singular value decomposition (HLSVD) time-domain selective filtering (8). After transforming the signal to the frequency domain, the baseline offset was subtracted from the spectrum. The normalization of the spectral data vector to the L2-norm was performed based on the data-points in the region [0.5, 4.2] ppm. Finally, the spectral range restricted to [0.5, 4.2] ppm was used as an input to SpectraClassifier 3.1, an automated MRS-based classifier-development system (9). Feature selection was performed with Correlation-based Feature Subset Forward Selection and the resulting features were used as an input to the Fisher Linear Discriminant Analysis (LDA). The number of spectral features selected using correlation analysis was set to 3 (≤n/3, where n is the number of cases in the smallest group).

Results and Discussion
Figure 1 shows the mean and standard deviation spectra for control and SCA1 groups with three identified features at 3T and 7T. The performance of the LDA classifier judged by the area under curve (AUC), and the identified spectral features and their weights are reported in Table 1. The projection space plot of the LDA classifier showed a distinct clustering with a complete separation between SCA1 and controls at 3T and 7T (Figure 2). LDA projection space results and clinical SARA scores were further used for correlation analysis (Figure 3). LDA classifier showed a distinct clustering with a complete separation between SCA1 and controls at 3T and 7T (Figure 2). LDA projection space results and clinical SARA scores showed significant correlation, whereas those at 3T did not. Spectral features identified at both magnetic fields were in agreement with previous findings (10). The improved sensitivity and resolution at 7T enabled the identification of three distinct features whereas only 2 distinct features were identified at 3T, indicating a potential to detect additional spectral features at 7T to distinguish groups. In addition, the potential to predict clinical representation of SCA1 at 7T was demonstrated. While a larger sample size is needed to confirm these findings, this pilot study indicates that increased sensitivity and resolution at 7T may improve the utility of untargeted metabolomics approaches in diagnostic 1H MRS.

References