Can 3D pCASL be another predictor to evaluate the collateral Perfusion in Patients with severe intracranial arterial stenosis?

Xin Lou¹, Diandian Huang¹, Lin Ma¹, and Kaining Shi²

¹Department of Radiology, Chinese PLA General Hospital, Beijing, Beijing, China, ²MR Research (China), General Electric Company GE (China) Co., Ltd.-Healthcare, Beijing, Beijing, China

PURPOSE

DSA remains the method that can best measure collateral extents, but it is relatively time-consuming, invasive, and costly. Determining the presence and adequacy of collateral blood flow is important in patients with severe intracranial stenosis or occlusion due to collateral flow can maintain cerebral circulation and may be another potential therapeutic target in acute ischemic stroke [1]. Therefore, we explored whether a non-invasive imaging modality, three dimensional pseudo-continuous arterial spin labelling (3D pCASL), could be used to detect the presence of collateral flow by comparing the cerebral blood flow (CBF) map in symptomatic and asymptomatic patients with unilateral middle cerebral artery (MCA) severe stenosis.

METHODS

Thirty-two symptomatic patients (male, 26, age, 41 ± 8.1 years) and 11 asymptomatic patients (male, 7, age, 43 ± 7.8 years) with severe unilateral MCA stenosis (>70%) were enrolled in this study. The perfusion data were obtained using 3D pCASL sequence on 3.0-T MR scanner (Discovery 750, GE Medical Systems). The 3D pCASL data with two post labeling delay time (PLD) of 1.5 and 2.5 seconds was acquired. The hypo-perfusion areas of PLD 1.5 S were compared on GE ADW 4.5 workstation [2].

RESULTS

Twenty-three with right MCA and 9 with left MCA severe stenosis in symptomatic patients, 6 with right MCA and 5 with left MCA severe stenosis in asymptomatic patients. Hypo-perfusion regions of 3D pCASL on PLD of 1.5 S were larger than PLD of 2.5 S, particularly in regions of gray matter in all patients. All asymptomatic patients showed clear regions of differences between PLD 1.5 S and 2.5 S, and 12 of 32 symptomatic patients showed clear regions of differences between two PLDs (Fig 1 and 2). There is significant difference of hypo-perfusion areas compared with two PLDs in symptomatic and asymptomatic patients (Pc0.05).

CONCLUSION

Multi-PLD 3D pCASL technique may be a useful non-invasive tool to evaluate the collateral perfusion in patients with intracranial arterial stenosis.

REFERENCES