Volumetric changes of subcortical nuclei in Mild Cognitive Impairment Converter: A longitudinal MRI study

Xiaojing Long1, Weiqi Liao1, Chuanxiang Jiang1, Dai Shan1, Yanjun Diao1, and Lijuan Zhang*1
1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China

Purpose
Previous studies have demonstrated volume shrinkage of subcortical nuclei in the brain of mild cognitive impairment (MCI) [1]. However, the evolution of the volumetric changes remains to be defined. In this study, we aimed to investigate the atrophy trajectory of subcortical structures from longitudinal data.

Materials and methods
Data of a total of 150 MCI converters (right-handed, age 75.74 ± 6.95 years, 88 males) was retrieved from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://www.loni.usc.edu/). All patients were followed up semiannually for 2 to 4 years with the time point of the diagnosis of MCI as the baseline. The time point when MCI converts to AD was calibrated to zero on the time axis. T1 weighted magnetic resonance imaging (T1WI) of each patient was acquired on 1.5T MRI scanners using a magnetization prepared rapid gradient echo (MP-RAGE) sequence with typical parameters of TR/TE 2400/3.5ms, TI 1000ms, flip angle 8°, acquisition matrix 256×256×170, and resolution 1.25×1.25×1.2 mm3 [2]. Images were preprocessed and segmented using FreeSurfer software (version 4.3, http://surfer.nmr.mgh.harvard.edu/). The average volume of the bilateral amygdala, caudate, hippocampus, pallidum, putamen, and thalamus was calculated and normalized for comparison.

Results
Volumetric shrinkage was detected in all the six subcortical nuclei, in which the volume of amygdala and hippocampus underwent the sharpest linear drop prior to and after the MCI conversion to AD (Figure 1). Volume of pallidum and thalamus decreased moderately relative to that of the rest of the six subcortical nuclei. Left caudate and putamen were almost invulnerable during the evolution from MCI to AD, whereas their contralateral counterparts experienced a reduction larger than 5% (Figure 2).

Conclusion
The remarkable volume changes of the subcortical nuclei were identified in amygdala and hippocampus during the conversion of MCI to AD, indicating that they may serve as a sensitive biomarker for the early diagnosis and monitoring of the disease. Structural atrophy of caudate and putamen was hemispheric asymmetric, which was in line with the previous finding from a cross sectional study [3].

References