Longitudinal DTI Study in Parkinson's Disease

Ling Ling Chan1,2, Helmut Rumpel1, Kia Min Ng2, Chooi Sum Yeoh1, and Eng King Tan1,3

1Singapore General Hospital, Singapore, Singapore, 2Duke-NUS Graduate Medical School, Singapore, Singapore, 3National Neuroscience Institute, Singapore

Target audience
Clinicians, Radiologists, MR Physicists and Researchers

Purpose
There is a need for an imaging marker to help evaluate progression in patients with Parkinson’s disease (PD), a common neurodegenerative disease. Current published studies are mainly cross sectional in design and there have been no longitudinal Diffusion Tensor Imaging (DTI) studies in PD. Utilizing a longitudinal follow-up methodology, we investigated the rate of decline in FA (∆FA/∆t) and apparent diffusion coefficient (ADC) (∆ADC/∆t) in PD patients and controls.

Methods
We recruited study subjects prospectively over a 5 year period. All subjects underwent DTI imaging at baseline and 5 years later using identical MR protocol. We measured the FA and ADC values in the caudate, putamen, thalamus and substantia nigra, with the frontal white matter as a reference. We evaluated the rate of change in FA or ADC in PD and controls using both univariate and multivariate analysis models.

Results
We included 98 subjects (46 PD patients and 52 controls) who gave informed consent to participate in the study. We found an increased FA and ADC in all the studied brain regions except frontal white matter (for FA). The rate of change (∆FA/∆t) was significantly different in the putamen (p=0.03) and thalamus (p=0.03). The values in the substantia nigra were also significantly different between PD and controls. The rate of change (∆ADC/∆t) in the putamen (p=0.01) and in the frontal WM (p=0.008) were also significantly different between the 2 study groups.

Discussion
The increased FA in PD over time was unexpected and possibly related to iron deposition. The greater rate of change in the DTI values in PD compared to controls suggest progression of pathology in PD and hence the rate of change may be a potential imaging marker of disease progression. Correlation of the rate of change with clinical severity will need to be carried out in future studies.

Conclusion
This is the first long term longitudinal DTI study demonstrating an increase in FA values in the SN in PD compared to controls, with a corresponding significantly larger ∆FA/∆t in PD. The rate of DTI changes over time may be useful as potential imaging markers of disease progression.

References