Sensitivity of magnetic susceptibility to white matter health in Cerebral Palsy

Zoe A Englander1,2, Wei Li1, Anastasia Baratchenko3, Jessica Sun4, Mohamed Mikati4, Joanne Kurtzberg2,3, Chunlei Liu1,5, and Allen W Song2,5
1Biomedical Engineering, Duke University, Durham, NC, United States, 2Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, United States, 3Pediatrics, Duke University, Durham, North Carolina, United States, 4The Robertson Cell and Translational Therapy Center, Duke University, Durham, North Carolina, United States, 5Radiology, Duke University, Durham, North Carolina, United States

Target Audience: Researchers interested in the use of quantitative susceptibility mapping (QSM) to study myelin specific white matter abnormalities.

Purpose: Recent work in quantitative susceptibility mapping (QSM) has indicated that magnetic susceptibility (χ) in white matter (WM) is sensitive to the integrity of the ordered lipids that constitute the myelin sheath, and is anisotropic with a sin2θ dependence on WM fiber orientation. Here QSM is combined with Diffusion Tensor Imaging (DTI) to investigate the changes in magnetic susceptibility and its anisotropy in damaged WM in children with cerebral palsy (CP). The brain injuries associated with CP commonly result in the disrupted development of oligodendrocytes, and subsequent hypomyelination and necrosis of WM, making this disorder an appropriate testbed for the sensitivity of QSM to myelin health. We hypothesized that alterations in myelin content or health would be reflected in altered magnetic susceptibility anisotropy. Regions of myelin specific WM damage may be detectable using QSM by identifying voxels with magnetic susceptibilities that deviate from their expected values calculated from an empirically derived QSM anisotropy reference curve.

Methods: QSM images were acquired using a 3D FSPGR sequence (TE=40 ms, TR=50 ms, flip angle = 20°, 1 mm3 isotropic resolution, FOV = 192 × 192 × 120 mm3). DTI data were obtained (25 directions, b =1000 + 380, TE=70.5 ms, TR=12000 ms, 2 mm3 isotropic resolution). The analyses presented here are focused on the WM associated with the cortico-spinal pathway, referred to here as the para-cerebral spinal tract (pCST), as damage to this WM is specifically relatable to clinical motor outcomes in CP. Creation of the pCST ROI for each subject was performed by warping the JHU-DTI-MNI “Eve” atlas template1 into each subject’s DTI image space via the Large Deformation Diffeomorphic Metric Mapping (LDDMM) algorithm2, and combining the atlas regions labeled as the corticospinal tract, the inferior cerebellar peduncle, the medial lemniscus, superior cerebellar peduncle, the anterior limb of the internal capsule and the posterior limb of the internal capsule for each hemisphere separately. Mean susceptibility, (χ̄), across all voxels with a primary diffusion direction at angle θ ranging from 0° – 90° in bins of 1° were plotted against the angles. The resulting data was fit to the equation χθ = χ0 sin2θ + χθ, where χ0 is the mean apparent magnetic susceptibility for voxels at each angle, θ is the angle between the primary diffusion direction at that voxel and B0 (main magnetic field), χθ is the anisotropy of the magnetic susceptibility, and χ0 is the baseline magnetic susceptibility of the tissue. We identified voxels with magnetic susceptibilities that deviated from their expected values based on an empirically-derived reference curve describing the relationship between magnetic susceptibility and angle in WM. Voxels with aberrant QSM values are likely to have differences in myelin content and health than those with minimal deviation from their expected values. QSM measures were compared between the damaged and healthier hemispheres in a cohort of unilaterally impaired children (n=13) with CP, and between groups of individuals with severe (n=9) versus moderate (n=6) bilateral CP, where the severe and moderate designation was based on Gross Motor Function Classification Levels (GMFCS).

Results: In both groups of subjects, QSM anisotropy was significantly reduced in the more damaged tissue as compared to healthier WM. Further, in comparison to DTI measures, voxels with aberrant QSM anisotropy encompassed but also had a larger spatial extent than those voxels with elevated radial diffusivity (a potential measure for myelin integrity) in anatomical regions with hypothesized tissue damages. These new findings indicate that QSM may provide information that is complementary to DTI regarding WM tissue properties, as well as more sensitive measures on myelin integrity to help elucidate the neuropathology of CP.

Discussion: Consistent reductions in QSM anisotropy in the more damaged white matter relative to the healthier white matter are demonstrated. By identifying voxels with aberrant QSM anisotropy, it is demonstrated that QSM may be able to identify specific regions of WM damage within the ROI that may not be identifiable using diffusion-based metrics alone.