Implications of unequal interstitium and plasma contrast reagent relaxivities in pharmacokinetic analysis of DCE-MRI

Xin Li1, Yu Cai1, Brendan Moloney1, Wei Huang1, Mark G. Garzotto2, Mark Woods1, and Charles S Springer1

1Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, United States; 2Portland VA Medical Center, Portland, Oregon, United States

Purpose: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) indirectly detects contrast reagent (CR) concentration through water proton relaxivity change. Within a single tissue compartment, a linear relationship is assumed, $\Delta R_1 = r_1 \Delta [CR]$. The slope r_1, the longitudinal relaxivity, quantifies the CR potency to change water proton T_1. It is current practice to assume that r_1 is the same in blood plasma and all interstitial compartments. However, there is evidence that a potential increase in the interstitium r_1 (1, 2). Based on human prostate data, we demonstrate the implications of differences of r_1 (interstitium relaxivity) to r_1p (plasma relaxivity) values on DCE-MRI pharmacokinetic parameters.

Methods: Prostate DCE-MRI data were acquired on 13 subjects with a Siemens TIM Trio (3T) system under an IRB-approved protocol. RF transmitting was through the whole body coil and RF receiving was with a combination of Spin Matrix and flexible Body Matrix coil arrays. The DCE-MRI acquisition employed a 3D TurboFLASH pulse sequence with a 256*144*16 matrix size and a 360*203 mm2 FOV, resulting in (1.4)3 mm3 in-plane resolution. Other parameters are: slice thickness: 3 or 3.2 mm; TR/TE/FW: 5.0 ms/1.57 ms/15º, image frame sampling interval: 6.3 s. A 0.1 mmol/kg CR (ProHance; Bracco) bolus was administered starting ~38 s after initiation of the DCE-MRI sequence. In general, the protocol of (3) was used. All subjects subsequently underwent standard ten-core prostate biopsies with ultrasound guidance. Malignancies were found in 5 subjects and the remaining were benign cases. One region of interest (ROI) was selected for each subject, resulting in 5 malignant and 8 benign ROI time-courses. Simulations were performed on ROI data from the subjects (one ROI per subject). r_1p is assumed to be 3.8 mM$^{-1}$s$^{-1}$. $\Delta [CR]$ was obtained from the best fit of the 20 trials for each combination were then selected as the fitted results.

Results: Fig. 1 shows representative malignant (red) and benign (black) Ktrans values with increasing r_1o change (not shown) is much smaller. This is quite reasonable since τ_1 measures water exchange kinetics while K_trans measures plasma/interstitium CR transfer kinetics. Results from this simulation study may partially explain the observations that DCE-MRI often obtains larger ve values than one would normally expect. In addition, $K_\text{trans} = k_o$, the CR intravasation rate constant (3-5). These results also suggest that k_o could be a more reliable imaging biomarker in certain in vivo applications. Current work underscores the importance of quantifying r_1o independently.

Grant Support: NIH: RO1-EB00424, U01-CA154602.