ACOUSTIC NOISE OPTIMIZED DIFFUSION-WEIGHTED IMAGING (DWI)

Martin Ott1, David Porter2, Felix Breuer1, David Grodzki2, Martin Blaimer1, Björn Heismann3, and Peter Jakob1,3
1MRB Forschungszentrum für Magnet-Resonanz-Bayern e.V., Würzburg, Bavaria, Germany, 2Siemens AG, Erlangen, Bavaria, Germany, 3Department of Experimental Physics 5, University of Wuerzburg, Würzburg, Germany

Target audience: This work aims for people who are interested in MR acoustic-noise experiments and patient comfort.

Purpose: There are several methods for acoustic-noise reduction in MR sequences such as hardware modification [1] as well as gradient design [2]. Up to now, acoustic-noise reductions have been investigated mostly for TSE and GRE clinical MR sequences [3, 4]. For example the use of parallel imaging and redesigned gradient waveforms can reduce acoustic-noise in EPI-BOLD imaging [5]. However, the acoustic-noise of diffusion-weighted imaging sequences can easily achieve over 100 dB(A) due to fast switching gradients as well as high gradient amplitude. In this work we present a modified prototype sequence based on diffusion-weighted, readout-segmented echo-planar imaging (rs-EPI) [7], which results in a significant reduction in acoustic-noise while retaining the image quality of a standard diffusion-weighted single-shot EPI sequence. This is achieved with an acceptable increase in imaging time and without the requirement for hardware modifications.

Methods: Figure 1 shows the pulse diagram for the rs-EPI sequence. After a diffusion preparation, two spin echoes are generated for collecting image and navigator data respectively. Multiple readout segments are acquired with different k offsets to achieve full k-space coverage; typical scanning protocols use between three and nine readout segments. The sequence is typically combined with parallel imaging using GRAPPA [8] and an acceleration factor of two, so that data sampling is only performed for every second k line. To reduce acoustic-noise level we developed and tested two major modifications:

a) The echo spacing (ESP) in the EPI readout was increased from 0.38ms to 1.0ms, leading to lower slew rates and less acoustic-noise. Thus the sampling bandwidth in read direction decreased by the longer echo-spacing and in addition offers time for smooth blips between subsequent k lines.

b) The longer echo times due to the lower slew rates were compensated by applying an additional partial Fourier factor of 6/8 in k direction. This has the same approach as applying asymmetric echo in cartesian k-space sampling.

The acquired data with long ESP had a lower sampling bandwidth (1.0ms => 217 Hz/px) in read direction than the acquired data with high ESP (0.38ms => 868 Hz/px) and can be used for compensating SNR loss due to partial Fourier. Experiments were performed on a 3T MAGNETOM Skyra system (Siemens Healthcare, Erlangen, Germany), equipped with a 20-channel head/neck coil. Different imaging parameters were tested and acoustic-noise was analyzed using a Bruel&Kjaer Mediator 2238 Noise Meter by placing a microphone in front of the bore during a phantom measurement. Images were acquired from healthy subjects using: one scan at b=0 and three scans with b=100s/mm² in three orthogonal directions. A GRAPPA acceleration factor of 2 was applied for all measurements. The partial Fourier reconstruction was performed using a Margosian algorithm after 2D navigator phase correction and combination of data from the different readout segments.

![Figure 1](image1.png)

Figure 1: Illustration of k-space sampling scheme in the modified rs-EPI sequence. The shaded area is not acquired due to partial Fourier,[7]

![Figure 2](image2.png)

Figure 2: Comparison of trace-weighted images: a) standard rs-EPI with ESP 0.38ms, b) single shot EPI and c) quiet rs-EPI with ESP 1.00 ms and partial Fourier factor of 6/8 in the phase-encode direction.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Average Noise load dB(A)</th>
<th>Imaging time</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) ESP: 0.38 ms, no PF, TR=5500ms, TE=70ms, 7 readout segments</td>
<td>99.6</td>
<td>3:03 min</td>
</tr>
<tr>
<td>b) ESP: 1.04 ms, PF 6/8, TR=5500ms, TE=98ms, single-shot</td>
<td>100.8</td>
<td>1:24 min</td>
</tr>
<tr>
<td>c) ESP: 1.00 ms, PF 6/8 , TR=5500ms,TE=85ms, 7 readout segments</td>
<td>84.3</td>
<td>3:44 min</td>
</tr>
</tbody>
</table>

Table 1: Imaging parameters and corresponding acoustic-noise values. Imaging parameters for all acquisitions: FOV: 240x240mm², matrix size 192x192, slice-thickness: 4mm, 25 slices, b-values of 0 and 1000s/mm² in three orthogonal directions were used.

Results: The results of the acoustic-noise measurements are shown in Table 1. A significant acoustic-noise reduction of 15.3 dB(A) was achieved compared to standard rs-EPI and 16.5 dB(A) compared to single-shot EPI. In figure 2 we show single image from each of the three protocols for comparison. Visual evaluation of the reference image (fig. 2a) and the image from the modified, quiet rs-EPI sequence (fig. 2b) shows differences between the two echo spacings of 0.38 ms and 1.00 ms. In the quiet image, T2 contrast decreases as well as image blurring; the main image information is retained. The TE could be kept short by applying partial Fourier, though ESP was increased. Overall, the image quality appears better than the standard single-shot EPI (fig. 2c). This is due to methodical different image reconstruction like zero-filling in single-shot EPI.

Discussion: The modified rs-EPI sequence with a partial Fourier acquisition in the phase-encoding direction allows DWI to be performed with reduced acoustic-noise. Image quality was even improved compared to standard single-shot EPI. To keep the high resolution of the standard rs-EPI sequence, a tradeoff between acoustic-noise and image quality could be made. Therefore the ESP could be increased to an intermediate value, such as 0.6 ms, for which a significant acoustic-noise reduction would still be achieved.

Conclusion: A clinical DWI sequence was addressed for acoustic-noise optimization. It is shown that the image quality can be maintained compared to single-shot EPI whilst patient comfort is substantially improved.

Acknowledgements: Siemens, Healthcare Sector, Erlangen, Germany, for financial and technical support.