Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy

Ji Soo Choi1, Hyeon-Man Baek2, Sukhmann Kim3, Min Jung Kim4, Hee Jung Moon5, and Eun-Kyung Kim6

1Samsung Medical Center, Seoul, Seoul, Korea, 2Korea Basic Science Institute, Chungbuk, Korea, 3Pusan National University, Busan, Korea, 4Yonsei University College of Medicine, Seoul, Korea

Purpose
Neoadjuvant chemotherapy (NAC) is well established as a standard treatment for locally advanced breast cancer. The heterogeneous character of breast cancer, however, results in varied responses to NAC. Pretreatment prediction of pathologic response to NAC could enable development of personalized treatment protocols, reducing unnecessary exposure of patients to chemotherapy toxicity and improving long-term patient outcome. The purpose of our study was to determine whether metabolic profiling of core needle biopsy (CNB) samples using high resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) could be used for predicting pathologic response to NAC in patients with locally advanced breast cancer.

Methods
After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS (11.7 T). Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. For multivariate analysis, orthogonal projections to latent structure-discriminant analysis (OPLS-DA) were performed to distinguish patient groups by pathologic response to NAC with HR-MAS MR spectral data of CNB samples obtained before NAC.

Results
Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolite ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response (pCR) group compared to the non-pCR group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups (Figure 1). Our OPLS-DA prediction model exhibited high sensitivities with range 94.6%–100% for differentiation pCR from other groups (Table 1).

Discussion
Many previous studies using HR-MAS MRS have used surgically obtained tissue samples. Therefore, the metabolic profiles could not be used to directly influence the pretreatment planning of therapeutic strategies. We conducted HR-MAS MRS using 14-gauge CNB samples and performed metabolic profiling of breast cancer without any problem. US-guided CNB is the most frequently used method for diagnosis of suspicious breast lesions and for IHC analysis for lesion characterization. Accordingly, metabolic profiles of CNB samples can be clinically applicable for pretreatment prediction of pathologic response to NAC using HR-MAS MR metabolic profiling of CNB samples for a large number of cancers. In addition, this study showed that OPLS-DA multivariate analysis using choline-containing metabolites of pretreatment CNB samples assessed by HR-MAS MRS may be used to predict pathologic response before NAC treatment, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further studies of HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.

Conclusion
This study showed that OPLS-DA multivariate analysis using choline-containing metabolites of pretreatment CNB samples assessed by HR-MAS MRS may be used to predict pathologic response before NAC treatment, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further studies of HR-MAS MR metabolic profiling of CNB samples for a large number of cancers. In conclusion, we expect that HR-MAS MR metabolic profiling of pretreatment CNB samples may be helpful to develop more personalized treatment protocols for locally advanced breast cancer patients, with respect to invasiveness and data quality.

Table 1. Diagnostic performance of OPLS-DA for predicting pCR after neoadjuvant chemotherapy.

<table>
<thead>
<tr>
<th></th>
<th>pCR vs. PR</th>
<th>pCR vs. SD</th>
<th>PR vs. SD*</th>
<th>pCR vs. non-pCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>92.3%</td>
<td>94.6%</td>
<td>88.7%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100.0%</td>
<td>90.0%</td>
<td>90.0%</td>
<td>87.5%</td>
</tr>
</tbody>
</table>

Figure 1. (A) OPLS-DA score and loading S-plot of the HR-MAS MR spectra from pCR and non-pCR (PR and SD) groups.

Reference