Quantitative analysis of dyssynchrony using cardiovascular magnetic resonance tagging imaging in idiopathic dilated cardiomyopathy

Tatsuya Nishi1, Atsushi K Komori2, Katsusuke Koyanagi, Kouya Nishiyama, Mayumi Shigera, Sachiko Takamine, Sei Fujiwara, and Kazuro Sugimura

1Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
2Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands
3Division of Radiology, Kobe University Hospital, Kobe, Hyogo, Japan
4Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan

Introduction: Conventionally, the analysis of left ventricular (LV) function is based on tracing the contour on cine images, and this provides information such as wall motion and wall thickening. On the other hand, tagging imaging on CMR evaluates the dynamic deformation of lines or grids superimposed on the myocardium during the cardiac cycle. Radial, circumferential, and longitudinal movement of the myocardium, as well as torsion and rotation of the heart, can be evaluated qualitatively and quantitatively from tagging imaging. Strain, which is expressed as the fractional change in length of myocardium during the cardiac cycle, can also be measured from tagging imaging. Among this sensitivity and quantitative capability of tagging imaging for detecting the deformation of myocardium, we hypothesized that the tagging imaging can quantitatively detect the details of myocardial dysfunction as well as dyssynchrony in idiopathic dilated cardiomyopathy (DCM) patients. The purpose of this study was to evaluate the details of myocardial dysfunction in DCM patients using tagging imaging.

Materials and Methods: Between July 2012 and June 2013, circumferential strain (Ecc) derived from tagging images was measured in 15 normal (NML) subjects (15 males; mean age 28.5 years) and 12 DCM patients (7 males; mean age 48.9 years). We used a 1.5-T system for DCM patients and a 3.0-T system for NML subjects to obtain tagging imaging, cine imaging (SSFp sequence) and T2 mapping (calculated from multi-TE FSE sequence). For tagging imaging, a total of 3 short-axis images, which are located at 25%, 50%, and 75% of the left ventricle, were obtained as well as 2- and 4-chamber long-axis images. The sequence was EPI sequence with SPAMM. The parameters were: FOV, 250mm; matrix, 176×176, TE, 4.0ms; TR, 17ms automatically determined by MR computer; FA, 13 degrees; BW, 44Hz; Slice thickness, 7mm; Cardiac phase, 21 phases; Tag spacing, 6mm.

The following parameters were analyzed using the open software InTag (www.cratis.insa-lyon.fr/InsTag/) and compared: 1) the magnitude of peak Ecc (Ecc*); 2) the coefficient of variation of the time giving Ecc* (CVtime*), which indexes dyssynchrony; and 3) descriptive findings of time-Ecc curves. We also evaluated correlations of Ecc* with ejection fraction (EF), myocardial T2 values, and late gadolinium enhancement (LGE) in DCM patients. Wilcoxon and Pearson tests were performed. Differences were considered significant at P<0.05.

Results: Mean Ecc*s in DCM patients and NML subjects were -12.7±1.0% and -23.5±1.4%, respectively (P<0.0001). Mean CVtime*s were 15.2±1.5% and 4.5±1.2%, respectively (P=0.0002). The findings of pre-systolic extension and systolic stretching in the septum were observed in 6 (50%) and 10 (83.3%) DCM patients, and in none of NML subjects. Ecc* correlated well with LVEF (Fig. 2a; R²=0.90, P<0.001), and moderately with mean T2 value (Fig. 2b; R²=0.44, P=0.018), but not with LGE.

Conclusion: Tagging images revealed the reduction of myocardial function, as well as dyssynchrony, in DCM patients. Tagging images have the potential to offer further understanding of the diseased myocardium in DCM patients.

Table 1. The results of cardiovascular magnetic resonance imaging.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NML (n = 15)</th>
<th>DCM (n = 12)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecc (%)</td>
<td>-23.5±1.0</td>
<td>-12.7±1.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>CVtime (%)</td>
<td>4.5±1.4</td>
<td>15.2±1.5</td>
<td>0.0002</td>
</tr>
<tr>
<td>Pre-systolic extension (n)</td>
<td>0</td>
<td>6 (50%)</td>
<td>0.0031</td>
</tr>
<tr>
<td>Systolic stretch (n)</td>
<td>0</td>
<td>10 (83.3%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean T2 value (ms)</td>
<td>NA</td>
<td>64.5±7.0</td>
<td></td>
</tr>
<tr>
<td>LGE (%)</td>
<td>NA</td>
<td>9.0±13.3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Circumferential strain maps and time-strain curves of a DCM patient.

Circumferential strain map of pre-systolic (Fig. 1a) and systolic phase (Fig. 1b). From the calculated map, each circumferential strain is plotted against time in the septal (blue line), lateral (red line), inferior (green dot line), and anterior (purple dashed line) walls (Fig. 1b). The yellow arrowhead shows pre-systolic extension and the orange arrowhead shows systolic stretching. The time point (Time*) giving Ecc in each segment was indicated and calculated CVtime*. (CVtime* = SD of Time*/mean of Time*).

Figure 2. Scattergrams of the correlation of Ecc* with the LVEF and mean T2 value in DCM patients.

Ecc* correlated well with LVEF (Fig. 2a; R²=0.90, P<0.001), and moderately with mean T2 value (Fig. 2b; R²=0.44, P=0.018).

References: