Tissue Phase Mapping analysis of IKr-blocker E4031 effects on mechanical cardiac function in transgenic long-QT syndrome type 1 rabbits

Marius Menza1, David Ziaupa2, Julia Beck3, Gerlind Franke2, Stefanie Perez Feliz2, Michael Brunner2, Gideon Koren3, Manfred Zehender2, Daniela Föll2, Bernd A. Jung1, and Katja E. Odening2

1Department of Radiology - Medical Physics, University Medical Center, Freiburg, Germany, 2Department of Cardiology and Angiology I, University Medical Center, Freiburg, Germany, 3Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States

Target audience: radiologists, cardiologists and medical physicists interested in cardiac function

Purpose: Long-QT syndrome (LQTS) is an inherited cardiac channelopathy, in which mutations in cardiac ion channels cause a prolongation of cardiac repolarization (prolonged QT interval) and predispose patients to ventricular tachycardia and sudden cardiac death. Drugs that block IKr-currents can mimic this disease, causing acquired LQTS, a serious side effect of a variety of different drugs. Thus far, LQTS was considered a purely “electrical” disorder of the heart. However, we have recently demonstrated also a mechanical dysfunction in transgenic LQT type 2 rabbits (loss of IKr currents) – due to electro-mechanical coupling [1].

The aim of this study was to investigate whether IKr-blocking drugs (E4031) similarly affect mechanical cardiac function. We therefore used transgenic LQT type 1 rabbits (loss of IKr) with a particularly high susceptibility to IKr-blocking drugs and compared them to wild-type littermate controls (LMC).

Methods: Transgenic LQT1- and LMC-rabbits (both n=11, male) were anesthetized with ketamine/xylazine, which does not affect electro-mechanical cardiac function [2]. They were subjected to tissue phase mapping (TPM) before (Baseline, BL) and during E4031-infusion (1µg/kg/min, intravenous) on a 1.5T Avanto MR-scanner (Siemens) with a 15-channel knee coil [3]. A black-blood prepared and 3-directional velocity encoded gradient echo sequence was used (temporal resolution 7.6 ms, spatial resolution 1.0x1.0x4.4 mm; venc [in-plane]=10 cm/s, venc [through-plane]=15 cm/s, 4 averages; prospective ECG gating; free breathing; kt-accelerated PEAK-GRAPPA; R=3 [4]) for acquiring 3 short-axis slices (base, mid, apex). Data post-processing (Matlab) included eddy current correction, semi-manual segmentation of the left ventricle (LV) and a transformation of the measured in-plane velocities (Vx,Vy) into perpendicular (Vr) and tangential (Vs) to the inner heart wall in-plane velocities. For segmental analysis the LV was divided according to the AHA 16-segment model (Fig. 3 & 4). Global (averaged over the entire slice, Fig. 1 & 2) and segmental velocity time courses were derived, systolic and diastolic peak velocities (AMPsys/AMPdia) and according Time-To-Peak (TTPsys/TTPdia) were extracted. Velocity data (for LQT1/LMC) before and during E4031-infusion were compared using paired t-tests (*p<0.05; **p<0.01; ***p<0.001).

Results: ECG measurements demonstrate an E4031-induced QT interval prolongation in LMC and more pronouncedly in LQT1 (Fig 1). Global long-axis velocity (Vz) time courses show an E4031-induced significantly increased AMPsys (p<0.010) and shortened TTPsys (p<0.012) as well as a significantly decreased AMPdia (p<0.002) and slightly prolonged TTPdia in LQT1, indicating an increased systolic function and an impaired diastolic relaxation (Base; Fig 2; mid and apex not shown; Fig. 1 second column). These results are confirmed by segmental analysis of Vz. In E4031-treated LQT1, peak systolic velocities are significantly higher in 16 of 16 segments (seg.) (p<0.05, Fig. 2) and systolic Time-To-Peak are significantly shortened in 8 of 16 seg. (p<0.05, not shown). Moreover, peak diastolic velocities are significantly decreased in 13 of 16 seg. (p<0.05, Fig.4; whereas TTPdia are only prolonged in 2 of 16 seg. (p<0.05, not shown). In contrast, in LMC, E4031 does not affect peak systolic velocities and only slightly affects peak diastolic velocities (4 of 16 seg., p<0.05, Fig. 4) as well as systolic and diastolic Time-To-Peak (2 and 4 of 16 seg., p<0.05, not shown).

Discussion: Similarly as observed in transgenic LQT2 rabbits, IKr-blocking drug E4031 prolongs cardiac repolarization (QT interval) and, importantly, also affects mechanical cardiac function. Due to electro-mechanical coupling, a prolonged cardiac repolarization results in an increased Ca2+ influx thus increasing cytoplasmic Ca2+ concentration [5]. This increased cytoplasmic Ca2+ may increase systolic function – as observed in E4031-treated LQT1 rabbits. Since physical properties of (resting) sarcomeres are related to cytoplasmic Ca2+ [6], an increased cytoplasmic Ca2+ may additionally result in an impaired diastolic relaxation – as observed in E4031-treated LQT1 rabbits. How this altered electro-mechanical function in LQTs may impact on the development of arrhythmias remains to be elucidated.

Conclusions: TPM enables a comprehensive analysis of global and segmental alterations of mechanical cardiac function in inherited and acquired LQT-syndrome and thus may provide a better understanding of electro-mechanical effects of ion channel blocking drugs.

References:

Acknowledgements: This research was supported by the “Margarete von Wrangell Program” by the MWK Baden Wuerttemberg and the European Social Fund.