Assessment of acute inflammatory liver injury in a rat CCl4 model using metabolic imaging of hyperpolarized [1-13C]pyruvate

Sonal Josan1,2, Kelvin Billingsley1,3, Juan Orduna2, Jae Mo Park1, Richard Luong4, Srinivas Reddy5, Ralph Hurd6, Adolf Pfefferbaum2,7, Daniel Spielman1, and Dirk Mayer1,8

1Radiology, Stanford University, Stanford, CA, United States, 2SRI International, Menlo Park, CA, United States, 3Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States, 4Comparative Medicine, Stanford University, Stanford, CA, United States, 5Surgery, University of Maryland, Baltimore, MD, United States, 6GE Healthcare, CA, United States, 7Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States, 8Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States

Introduction

Hyperpolarized 13C MRS provides a unique opportunity to measure dynamic metabolic processes in vivo under normal and pathologic conditions. While numerous studies have investigated hyperpolarized pyruvate (Pyr) in cancer and heart disease, few studies have reported applications in early detection of hepatic inflammatory mediated injury. Lee et al.1 found increased group (n=10) that received CCl4 through i.p. injection at a dose of 1 mL/kg body weight (dissolved in olive oil at a ratio of 1:1 v/v), and a control group (n=8) that was administered only oil. Imaging was performed 48-72 h post treatment. A 125-mM solution of hyperpolarized [1-13C]Pyr was injected via tail vein (target dose 1.25 mmol/kg), with 40-mM 12C-Ala added to the dissolution buffer to reduce pool size effects2. The samples were hyperpolarized via Dynamic Nuclear Polarization using HyperSense (Oxford Instruments, Oxford, UK).

Dynamic 3D spiral chemical shift imaging (CSI) data4 were acquired from a volume including the liver and kidney (FOV=80x80x60 mm3, 5 mm resolution, TR=5 s, 4.5 s acquisition, start scan coincident with Pyr injection). At the end of the exam, liver tissue was harvested for ALT enzyme assay and histopathology.

Results and Discussion

Figure 1 shows time-averaged 13C metabolic maps superimposed onto corresponding 1H MR images for a slice through the liver from a CCl4-treated rat. Figure 2 plots the metabolite-to-substrate ratios, averaged over the first 60 s of 13C CSI data, from an ROI in the liver for the control and CCl4-treated groups. The Ala/Pyr and Lac/Pyr ratios were higher for the treated group compared to the control group (unpaired t-test P<0.02). As shown in Figure 2, the liver tissue ALT activity was also elevated in treated animals compared to control animals (P=0.02). The increased Lac/Pyr ratios for the treated group were also consistent with metabolic changes due to inflammation6,9. In contrast, there was no significant difference in Ala/Pyr or Lac/Pyr ratios between control and treated groups for a kidney ROI.

Microscopic examination of H&E stained liver sections revealed lesions consistent with CCl4 exposure, including steatosis (lipidosis) and diffuse acute necrosis of centrilobular hepatocytes, sometimes with neutrophilic infiltration. The severity of the steatosis, inflammation and necrosis ranged from mild to moderate. Control animals displayed normal liver histology with no evidence of necrosis and minimal or no background inflammation.

While there were group differences in the Ala/Pyr ratios and the tissue ALT enzyme activity for the control and treated groups, no significant correlation was observed between the Ala/Pyr ratios and ALT activity (P=0.38). This could be due to heterogeneity in CCl4 response across the liver tissue as only a small part of liver tissue was used for ALT assay, complicating the comparison between MR measurements and enzyme assay.

This work demonstrates that hyperpolarized 13C metabolic imaging with hyperpolarized [1-13C]Pyr is sensitive to inflammatory mediated liver injury. More work is needed to optimize imaging to reduce measurement variability and validate the correlation with tissue enzyme activity.

References


Acknowledgments: NIH grants P51 EB005891, EB009070, AA018681, AA05965, AA13521-INIA; GE Healthcare