Single-shot Acquisition of [1-13C]Pyruvate and Lactate on a 3T Clinical Scanner
Benjamin J. Geraghty1,2, Justin Y. C. Lau1,2, Albert P. Chen3, and Charles H. Cunningham1,2
1Dept. of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, 2Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada, 3GE Healthcare, Toronto, Ontario, Canada

TARGET AUDIENCE: Researchers interested in rapid 13C metabolic imaging.

PURPOSE: Hyperpolarized 13C imaging offers the potential to dynamically probe metabolism in vivo. The most prevalent imaging methods include fast chemical shift imaging (CSI), frequency selective spectral-spatial (Sp-Sp) excitation [1] and IDEAL [2]. Recently, a joint spectral-spatial (k-t) technique was demonstrated on a small animal scanner, effectively combining CSI and IDEAL within a single shot [3]. Joint spectral and spatial encoding is achieved by oversampling the FOV during a spiral acquisition and performing a model based, least squares reconstruction. Large oversampling rates are required to improve the conditioning of the reconstruction problem; however, due to limited gradient performance, the oversampling rate necessary to resolve multiple metabolites within a single shot cannot be achieved on conventional clinical scanners. We propose to combine k-t oversampling with Sp-Sp excitation to reduce gradient demands and resolve separate images of [1-13C]pyruvate and [1-13C]lactate within a single-shot spiral readout.

METHODS: A numerical phantom was developed in Matlab to correspond directly with the standard GE 13C phantom. Its chambers contain formate, lactate, bicarbonate and alanine. Formate is used in place of pyruvate in the GE phantom. A spiral trajectory (16384pts, 125KHz BW, 65ms readout) was computed for an FOV of 10cm, corresponding to an oversampling factor of 2X. Analytical spiral k-space data was derived for each chamber, modulated to the respective chemical shifts and summed to generate the synthetic signal. The effect of Sp-Sp excitation on reconstruction was evaluated by generating data which excluded the bicarbonate and alanine signals. The signal equation can be cast as a linear system of equations b = Ax, where x is the vectorized concatenation of spatial profiles, and can be solved by least squares minimization. A dual-band, Sp-Sp pulse (figure 1) was designed to selectively excite formate/pyruvate and lactate simultaneously while minimizing sideband interaction with 13C-bicarbonate. Thermally polarized 13C data were acquired with a dual-tuned 1H/13C quadrature rat coil using the same 10cm FOV spiral k-space trajectory as in the synthetic data. For the in vivo acquisition, 2.5mL of 80mM [1-13C]pyruvate, prepolarized using the SpinLab DNP polarizer (GE Healthcare), was injected into a healthy rat (GE MR750, FOV=15cm, TR/TE=5000/25ms, FA=10deg, BW=125KHz,15 time points, 1 slice, 2cm thick). A fast spin echo axial anatomical image was acquired following the 13C acquisition (FOV=15cm,TR/TE 3500/102ms).

RESULTS & DISCUSSION: The simulated results indicate that an oversampling rate of 2X is insufficient for resolving four metabolites. Figure 2a reveals considerable contamination from bicarbonate and alanine within the formate (red) and lactate (blue) images. By excluding bicarbonate and alanine, formate and lactate are well resolved (figure 2b). The thermally polarized in vitro phantom images (figure 2c) acquired with the tailored Sp-Sp pulse are in good agreement with the simulation results. Time points 2 through 6 of the reconstructed pyruvate and lactate images are presented in figure 3. The peak SNR was estimated by taking the ratio of the maximum pixel intensity to the standard deviation of pixel intensities in the final image, which corresponds to thermal equilibrium polarization. Both metabolite signals are well localized to the kidneys, as is expected in a healthy rat. Preconditioning of the system of equations by unequal weighting is necessary in vivo to account for the large discrepancy in signal magnitudes between pyruvate and lactate. Without preconditioning, the least squares routine settles at a suboptimal solution where the lactate images are completely contaminated by off resonance pyruvate signal. Further investigation into the preconditioning requirement is necessary. The simultaneous excitation and acquisition of pyruvate and lactate reduces the number of TRs that would otherwise be necessary in a purely Sp-Sp acquisition. For a fixed spiral readout duration, image resolution is effectively traded off for improved temporal resolution.

CONCLUSION: We have demonstrated a unified spectral-spatial excitation and encoding scheme which allows the simultaneous acquisition of pyruvate and lactate images on a clinical scanner. Further research into the optimal use of the spatial / temporal resolution trade off is underway.

REFERENCES: