Impact of inversion-recovery fat suppression on hepatic R_2^* quantitation in transfusional siderosis.

Antonella Meloni1,2, J. Michael Tyszka3, Alessia Pepe3, Massimo Lombardi2, and John C Woold4

1CMR Unit, Fondazione G.Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, Pisa, Italy, 2Department of Pediatrics, Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, California, United States, 3Division of Biology, California Institute of Technology, Pasadena, California, United States, 4Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, California, United States

Introduction. MRI relaxometry has been increasingly used to quantify liver iron. However, the presence of fat can introduce additional modulations with echo time (TE) in the acquired signal, that manifest as erroneous increases in the apparent R_2^* [1]. Conventional fat suppression (FS) techniques can minimize fat signal contributions [2, 3]. The aim of this study was to evaluate if the application of spectral presaturation inversion recovery (SPIR) FS in standard multi-echo gradient echo sequences had a significant impact on hepatic R_2^* estimates in patients with iron overload syndromes.

Materials and methods. Eighty patients were scanned with a multi-echo gradient echo sequence without and with the application of SPIR. Six different post-processing methods were used to extract R_2^* values for maximum generality. Each analysis was defined by three different aspects, summarized in the Table on the right.

Results. The Table below summarizes the effect of fat saturation on R_2^* estimation. FS lowered R_2^* values by between 3.9% and 7.0% (P<0.0001 in all pair-wise comparisons), independently of the post-processing algorithm. Coefficients of variation (CoV) for R_2^* ranged from 4.5% to 10.0%. Regardless to the size of the region of interest (area of homogeneous tissue or entire liver profile in the slice), pixelwise approaches combined with an exponential-plus-constant fitting model yielded the lowest CoV (4.5% and 5.1%) while truncated exponential fits of the averaged signals produced the highest CoV (7.8% and 10%). For R_2^* values exceeding 200 Hz, the Bland Altman analysis showed a bias that grew linearly for all post-processing methods (see Figure).

Conclusions. FS resulted in systematically lower R_2^* estimates. Since calibration curves were derived using images without fat suppression, these biases should be corrected when reporting liver iron concentration from FS images.