Robust T_1-Insensitive Whole-Brain T_1 Mapping with 3-TI MP-RAGE: Validation and Acquisition Strategy
Ives R Levesque,2, Manojkumar Saranathan,3, Thomas Tournier,1, Jason Su,1, James A Rioux,1, and Brian R Kutt1
1Radiology, Stanford University, Stanford, CA, United States; 2Medical Physics, Oncology and RI-MUHC, McGill University, Montreal, QC, Canada; 3Department of Neuroradiology, Bordeaux University Hospital, Bordeaux, France; 4Electrical Engineering, Stanford University, Stanford, CA, United States

Target audience: Researchers, clinicians, and neuroscientists interested in robust volumetric high-resolution T_1 mapping.

Purpose: Fast T_1 mapping is potentially useful for segmentation of brain structures and for myelin imaging. Accurate, whole-brain, high-resolution T_1 maps have been obtained in monkeys at 7 T in a clinically relevant time, from 3 MP-RAGE images with carefully selected inversion times (Ti). This approach, which we will refer to as 3-TI-MP T_1 mapping, is free from B_1 heterogeneity effects, a particularly attractive feature for high field (≥ 3 T) applications. We implemented 3-TI-MP for human imaging at 7 T based on a MP-RAGE sequence with 1D-centric (k_r) ordering. We also implemented a 2D-centric (k_r-k_z) phase encode ordering scheme (radial fanbeam, or 2D-RFB) to improve scan efficiency. In this work, we validated the method, and compared the accuracy and blur of the 3-TI-MP method for different k-space ordering and parallel imaging factors.

Methods: 3-TI-MP data were acquired using 3 serial MP-RAGE scans with optimally selected Tls (= 150, 1280, 4000 ms). One k-space segment was acquired after each inversion pulse (inversion pulse spacing $T_S = T_I + N*TR + TD$, using $N=180-240$ readouts, each at small flip angle ($a = 5^\circ$) and short TR ($= 7.7$ ms), with other parameters as in Table 1. T_S was held constant for the different Tls by altering the final delay TD; this removes dependence on M_0, T_1, and B_1 and allows rapid T_1 estimation based on a simple lookup table. All data were collected using a GE Discovery MR950 7 T scanner (GE Healthcare, Waukesha WI USA) with a 32-channel head coil (Nova Medical, Wilmington, MA USA). Data were collected in a multi-compartment phantom constructed using a range of MnCl2 in 0.9 % saline solution, to provide T_1 values expected at 7 T in the MR950 7 T scanner (GE Healthcare, Waukesha WI USA) with a 32-channel head coil (Nova Medical, Wilmington, MA USA). Data were collected in a multi-compartment phantom constructed using a range of MnCl2 in 0.9 % saline solution, to provide T_1 values expected at 7 T in the MR950 7 T scanner (GE Healthcare, Waukesha WI USA) with a 32-channel head coil (Nova Medical, Wilmington, MA USA).

Results: T_1 estimation based on magnitude-data with polarity restoration was simple to compute and generally correct in white matter, but led to large errors in long-T_1 regions such as cortical grey matter near cerebrospinal fluid (data not shown), and for this reason was subsequently abandoned. The reference and coil-wise-complex 3-TI-MP T_1 maps agreed well in the phantom ($r = +0.98$), and 2D-RFB ordering produced better quality T_1 maps than 1D-centric, as seen in Fig. 1. In volunteers, the correspondence of reference and 3-TI-MP T_1 maps was very good ($r \geq +0.78$), and 2D-RFB resulted in maps with lower spatial variability (COV range=4-9% for 2D-RFB vs. 6-9% for 1D-centric) in a shorter scan time (Fig. 2).

Discussion and Conclusions: This experimental demonstration of B_1-insensitive 3-TI-MP whole-brain T_1 mapping at 7 T, validated against a reference technique in phantoms and in vivo human volunteers, demonstrates high accuracy and precision, and holds promise for future research and clinical applications. The proposed 2D-RFB k-space ordering scheme decouples readout train length from the slice dimension, extending the readout train and allowing for 2D acceleration, and reducing spatial blur in the k_z direction without any use of k-space filtering.

Acknowledgement: Research support from NIH P41 EB015891, GE Healthcare and the Richard M. Lucas Foundation.