INTRODUCTION: B_1 maps are an essential part of most quantitative MRI protocols, including Variable Flip Angle (VFA) T_1 mapping. To achieve whole brain quantitative imaging in reasonable scan times, several novel rapid B_1 methods have been introduced. Recent works have compared several novel B_1 mapping methods used at 3T in simulations, phantom scans, and in vivo. Accelerating B_1 mapping can also be done through fast k-space trajectories, such as EPI, but are sometimes dismissed due to the possibility of distortions associated with artifacts, particularly for brain imaging. The aim of this work was to compare VFA T_1 maps in white matter (WM) produced with four B_1 methods: Reference double angle (DA), Bloch-Siegert, Actual-Flip-Angle Imaging (AFI), and DA using a stock scanner spin-echo EPI readout sequence (EPI-DA).

METHODS: Six healthy adult subjects were scanned with a 3T Siemens Tim Trio MRI using a 32-channel receive-only head coil. Axial slices (2x2x5 mm) were acquired (or extracted from 3D volumes) parallel to the AC-PC line above the corpus callosum. A reference DA B_1 map was acquired using a turbo spin echo readout with TE/TR 12/1550 ms and $\alpha=60/120^\circ$. Whole brain 3D optimally spoiled A^2 B_1 maps were acquired with TE/TR 1 5/100 ms, N = 5, $\alpha=60^\circ$, spoiling gradient moment $A_y=450$ mT·ms/m and RF phase increment $\phi=39^\circ$. Single slice BS B_1 maps were acquired with TE/TR 15/100 ms, $\alpha=25^\circ$, 8 ms Fermi Pulse of 500° at ±4kHz off-resonance and $K_{BS}=74.01$ rad/G. Interleaved multi-slice spin-echo EPI-DA whole brain B_1 maps were acquired with TE/TR 46/4000 ms, $\alpha=60/120^\circ$, EPI Factor = 9 and echo spacing = 4.18 ms. To further investigate possible distortion artefacts in EPI-DA B_1 maps, a left-hemisphere sagittal slice B_1 map for both DA methods was acquired for one subject. VFA T_1 maps were acquired using an optimally spoiled 3D gradient echo sequence (TE/TR 2.89/15 ms, $\alpha=3/20^\circ$, $A_y=280$ mT·ms/m, $\phi=169^\circ$), and the flip angles were scaled voxel-wise by each B_1 map prior to fitting for T_1. Whole-brain T_1w MPAGE images (1x1x1 mm3) were acquired, and tissue classification maps (WM, GM, CSF) were provided via INSECT with the ICBM-152 atlas. WM tissue masks were resampled to a 2x2x5 mm3 slice using a majority voting analysis; GM and CSF were not included because of partial volume effects due to the voxel size.

RESULTS: Single slice B_1 maps and WM T_1 maps for a single subject are shown in Fig.1. Figure 2 displays histograms for single slice WM T_1 data that was pooled for all subjects. Linear regression analysis of pooled WM T_1 for each B_1 relative to the reference is shown in Table 1. Figure 3 compares reference DA and EPI-DA sagittal B_1 maps for a single subject. No significant B_1 maps distortions were observed in axial or sagittal EPI-DA B_1 maps.

DISCUSSION: All B_1 methods provided comparable B_1 and VFA T_1 maps. EPI-DA, the fastest of the B_1 maps (5 s/slice), had no observable B_1 artefacts (Figs. 1 and 3), due to careful sequence planning (low EPI factor, long echo spacing). Strong correlations were observed between VFA T_1 maps using flip angles corrected with each B_1 map.

Transmit B_1 in the brain is typically observed to be a slowly varying function. Interpolating or blurring B_1 maps has been used for both transmit and receive B_1, and could remove structural information from the B_1 maps, particularly for maps measured using novel (BS, AFI) or k-space accelerated (EPI-DA) methods. For multi-site or multi-scanner studies requiring whole-brain B_1 maps, EPI-DA could be a good alternative to novel methods, which are not available as stock-sequences on most scanner platforms.

CONCLUSION: All B_1 methods resulted in comparable WM T_1 maps, and all rapid methods strongly correlated with the reference DA map. EPI-DA, the fastest of the techniques derived from a stock scanner sequence, correlated the best with Ref. DA with no observable distortion artefacts. As B_1 maps are expected to be smooth, blurring or spline smoothing could be beneficial at improving B_1 maps for quantitative MRI methods (e.g. spline interpolation would remove visible anatomical regions such as the sulci and ventricles in EPI-DA B_1 maps (Fig. 1)).