TARGET AUDIENCE. MRI clinicians and scientists interested in efficient, complete T_1, T_2, proton density (PD) characterization.

PURPOSE. The T_1 and T_2 relaxation times, and proton density (PD) contain almost all of the 1H MRI information routinely used in clinical diagnosis and research, but are seldom imaged directly. In addition, their accuracy depends critically on B_1-field homogeneity, making field mapping essential, especially at higher field strengths. Here we propose a novel ‘Tri-FA’ method to measure and image T_1, T_2, PD and B_1 with only 4 acquisitions—the minimum possible. This ‘Tri-FA’ method encodes T_1 with 3 varied flip-angles (FA), and T_2 via long 0° BIR-4 pre-pulses instead of spin-echoes. 2D and 3D ‘Tri-FA’ MRI is demonstrated in vitro and in vivo at 3 Tesla.

METHODS. It was recently noted (1) that self-refocusing B_1-independent rotation (BIR-4) adiabatic pulses are prone to intra-pulse T_2 decay that depends on the BIR-4 pulse duration (τ), B_1 amplitude, sweep frequency, but is independent of BIR-4 FA. Using four spoiled gradient-echo sequence (SPGR) acquisitions, the ‘Tri-FA’ measures signals S_{1-3} acquired with the same TR (eg, 600ms) but varied excitation FAs ($\theta_{1-3}=30^\circ$, 80°, 140°), and a 4^{th} signal, S_4 acquired with a $\tau=20$ms 0° BIR-4 prepulse (excitation FA=θ_{1}, TR’=1036ms). It can be shown that: $S_{1-3}=M_0(1-E_1)\sin(q.\theta_{1-3})/(1-E_1\cos(q.\theta_{1-3}))$, and $S_4=M_0(1-E_1')\sin(q.\theta_{1})E_p/(1-E_1'\cos(q.\theta_{1}).E_p)$, where q reflects the B_1 field inhomogeneity. T_1, T_2, M_0, and q are solved from S_{1-4}.

Tri-FA was validated in 2D and 3D MRI studies on a clinical Philips 3T scanner. In vitro validation was performed on 11 CuSO$_4$ doped agarose phantoms with $186 \leq T_1 \leq 1332 ms$, $13.2 \leq T_2 \leq 227$ms. In vivo brain studies were performed on healthy consenting adult volunteers (3D matrix =224x224x5, FOV= 200x200x25mm3; 2D matrix=224x224, FOV=200x200x5mm3). Tri-FA measurements were compared with the central slices of standard 3D spin-echo (SE) T_2, partial saturation (PS) T_1, PD maps and B_1 maps acquired by actual flip-angle imaging (AFI)(2). 2D Tri-FA measurements were corrected for slice profile distortions.

RESULTS. The measured T_1, T_2, PD and B_1 of the phantoms are plotted vs. the standard values in Fig.1(a-d). The T_1, T_2, B_1, and PD errors(%) vs the standard values is 2.5%±14%, 3.6%±9%, 0.9%±8%, and 3.6%±4%, respectively. In vivo 3D results from a volunteer are shown in Fig.1(e-h). Mean (\pmSD) errors are -4.8(\pm10.4)% for T_1, and 1.1(\pm12.5)% for T_2, measured in the boxes annotated in Fig.1(e). For 2D Tri-FA brain MRI, errors are -3.6(\pm6)% for T_1, and -8.5(\pm3.6)% for T_2 after slice profile correction. Analysis shows Tri-FA provides considerably higher accuracy/unit time vs other parameter mapping methods (DESPOT1/2, etc; not shown).

Conclusion. The novel Tri-FA method offers a minimum-acquisition option for imaging single-component T_1, T_2, and PD, with B_1-inhomogeneity self-correction. Tri-FA was validated in 3D applications at 3T, as well as 2D MRI where standard methods can fail.

Grant support: NIH R01 EB007829.

Fig 1. (a-d) In vitro Tri-FA results vs. standard values in 11 phantoms. (e-h) Color coded in vivo 3D Tri-FA maps for a volunteer.