Introduction: The growing use of images based on measurements of the gradient echo signal phase in susceptibility weighted imaging and quantitative susceptibility mapping (QSM), means that it is increasingly important to understand the effect of susceptibility inclusion on the measured signal phase. Generally in QSM it is assumed that the measured phase/frequency variation reflects the summed effect of the dipolar fields generated by the volume average susceptibility in each voxel. Recently, however, it has been shown that long cylindrical inclusions that generate no NMR signal have no effect on the measured signal phase when confined to a cylindrical region and more generally that the phase variation produced by shaped NMR invisible perturbers depends on their shape in a short echo time regime. In these circumstances, the contribution to the average phase/frequency offset in a voxel due to the material inside the voxel does not necessarily reflect its average magnetic susceptibility. This is important because there are many examples of oriented inclusions (e.g. myelin sheaths, iron deposits and pleioblast blood vessels), which affect the phase of the signal measured from tissues. In previous work, the effect of randomly-oriented spheroids on the signal magnitude and phase has been investigated in detail, including the effect of diffusion, while the effect of oriented spheroids has been considered to some extent, but only in the absence of diffusion. Here we use numerical simulations to carry out a detailed evaluation of the effect of prolate spheroids on the signal phase.

Theory and Methods: A prolate (needle-like) spheroid is produced by rotating an ellipse with major and minor axes of length 2c and 2a (with c = qa and q > 1) about the c-axis. We consider single prolate spheroids of susceptibility, χ, embedded in a spherical volume, whose radius, R, is set by the desired volume fraction (VF = a²c³/R³) of the perturbers: with the applied magnetic field, B₀, aligned with the long axis of the spheroid. The field perturbation outside the spheroid, δB(r), was calculated using the expression previously described by Sukstanskii and Yablonskiy. To calculate the signal evolution, 1 million “particles” were randomly seeded in the voxel(spherical volume (R = 150 voxels), excluding the spheroid, and then each underwent a 3D random walk with time-step, δt, accumulating position-dependent phase, γδBδt at each time point. Random-walking particles were reflected at the boundary of the spheroid and particles exiting the spherical volume were randomly repositioned on the sphere’s surface. The signal at each time-point was found by summing the complex signals from all particles. We focus on the summed signal’s phase, φ, and instantaneous angular frequency, ω₀ = φ/dt. Simulations were carried out in Matlab, with B₀ = 7T. χ = 10⁷ (δω₀ = γχR₀ = 187 s⁻¹) class 1 (sphere), 1.5, 2, 2.5, 3 and 4, and VF = 1 or 2% (corresponding to spherical inclusions of radius 32 and 41 voxels). The diffusion rate was varied by changing the time step δt = n⁻¹ ms, with n = 1, 2, 4, 8, 16, 32 or 64 (D = [voxel width]²/2δt) and simulations were also carried out with no diffusion. The time range considered was 0–0.25s, yielding a max value of δω₀ ≈ 47.

Results: Figure 3 (inset) shows the imaginary part of the signal(with D = 0) in an x-z plane through the centre of a spheroid with c/a = 2 and VF = 2% at t = 0.25s, giving an indication of the form of the field variation and the extent of dephasing. Figure 2 shows the variation of the phase of the signal with δω₀ for spheroids with c/a = 2 and varying diffusion rates, for the two different VF’s. As expected the rate of phase accumulation increases with VF; shows distinctive variation with t for no diffusion and is most affected by diffusion at longer times. Figure 3 shows the variation of scaled angular frequency, ω₀(δω₀ × VF) with δω₀ for spheroids with varying aspect ratios and for different rates of diffusion (VF = 1%). It is evident that the frequency is dependent on the spheroid aspect ratio and shows an oscillation with time, which is damped by diffusion.

Discussion: Three key length scales are important in the simulations: L = 2c = the longest dimension of the spheroid; L₀ = √Dτ is the diffusion displacement at time, t; and Lₚ = L₀δω₀t/qa² which is the radial distance from the spheroid’s centre at which the phase variation due to an equivalent dipole is approximately, 2π over a spherical surface. For small δω₀ the average frequency depends on the average frequency offset in the volume outside the spheroid, which has previously been shown to vary as δω₀VF × (Dτ⁻¹/³) for a spherical volume. Here, Dₚ is the spheroid’s demagnetising factor, which varies from 1/3 for a sphere to ~ 1 for a long thin needle-like spheroid. Figure 4 confirms that the scaled frequency ω₀(δω₀ × VF) at t ~ 0 is proportional to (Dₚ⁻¹/³) and shows that the scaled frequency shows a similar dependence at large values of δω₀ for the highest diffusion rates. This is also evident from the data of S., which shows that the frequency is time independent for the highest diffusion rate. This behaviour arises because L₀ > L for all times when δω₀ ≫ 2π, so that the diffusion effectively averages the frequency over the volume. Oscillations of the frequency occur when L₀ > L, and a region of significant dephasing (where the phase varies over many multiples of π) is produced around the spheroid (Fig. 1). Although this regime was not explored in these simulations, it is expected that all spheroids will produce a similar frequency offset of 0.053 δω₀ × VF when L₀ ≫ L, Lₚ.

Conclusion: These findings confirm that the average frequency offset produced by oriented, NMR-invisible inclusions is strongly dependent on the shape of the inclusions even in the presence of diffusion and does not therefore simply relate to the average volume susceptibility. In the short (δω₀ ≫<< 1) and long-time (L₀ >> L, Lₚ) regimes the frequency offset has a simple dependence on the demagnetising factor of spheroidal inclusions.