Use of L1-norm solution to Impose Spatial Smoothness Constraints in Quantitative T2 Relaxometry

Dushyant Kumar 1, 2, Susanne Siemonsen 1, 2, Margherita Porcelli 1, Jens Fiehler 1, Christoph Heesen 4, and Jan Sedlacik 1

1 Dept. of Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Hamburg, Germany. 2 Multiple Sclerosis Imaging Section (SeMSI), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Hamburg, Germany, 3 Mathematics, University of Bologna, Bologna, Bologna, Italy. 4 Institute for Neuroimmunology and Clinical MS Research, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Hamburg, Germany

Target Audience: Researchers interested in prior information in T2 relaxometry quantification.

Introduction: Quantitative T2 relaxometry (QT2R) has been successfully used to monitor tissue damages in various demyelinating neurological diseases such as multiple sclerosis [1] and stroke, along with detecting abnormal tissues in muscle and liver and even cancerous tissues. However, because of the ill-posedness of the problem, the returned T2 distributions and subsequently the tissue fraction maps are very sensitive to signal to noise ratio (SNR), requiring high SNR of >500 for robust data fitting. Conventional L2-norm regularization [2] imposing the temporal smoothness of the T2 distribution improves the stability of the solution. But, improvement is not adequate at low SNR. Kumar et al [3] introduced spatial smoothness constraints using L2-norm. Here, we compare the performance of an L1-norm solver against L2-norm solver.

Theory: Assuming the underlying T2 distribution consists of discrete T2 points logarithmically chosen over a range of relevant T2 values, the signal at any echo time T_E for a single voxel is given by: $y = Ax + e$, with $A_{ij} = \text{exp}(-TE_i/T_2(j))$ with y the signal decay column vector and x the column vector consisting of all volume fractions α_i for respective T2 values of $T_2(i)$, and e denotes the noise vector (white Gaussian). The corresponding multiple voxels forward equation can be written as: $\gamma = A_x x + F x \geq 0$, where the single-voxel quantities x, y, e are collected into multi-voxel column vectors x, y, and A_{ij} is the block diagonal matrix. To improve the stability of reconstruction with respect to noise, the prior expectations regarding the spatial smoothness of tissue organizations is introduced. The spatial smoothness using L2-norm [3] minimize $\hat{x} = \arg \min_x \| A \alpha - y \|_2^2 + \sum \frac{1}{2} \mu S \| D \alpha - \hat{\alpha} \|_2^2$; $\alpha \geq 0$ (1). whereas the form using L1-norm minimize $\hat{x} = \arg \min_x \| A \alpha - y \|_2^2 + \sum \frac{1}{2} \mu S \| D \alpha - \hat{\alpha} \|_2^2 + \sum \|\alpha_i\|$; $\alpha \geq 0$ (2)

where α_i is the diagonal matrix with voxelwise temporal regularization μ_i along its diagonal and μ_S is spatial regularization parameter. The first term imposes the data fidelity, while the second term, the conventional regularization term, penalizes large values in inferred T2 distributions. The third term imposes spatial constraints. Matrix D_{ij} is first difference operator, the norm $\| D_{ij} x \|$ penalizes non-smooth solutions for each T2-points.

Data and Methods:

Simulation: A numerical phantom consisting of lesions (single pool with T2 of 100 ms) with varying sizes (1-8 voxels wide) surrounded by matrix (two pools with geometric means of T2 of 30 ms and 100 ms) was used to evaluate the developed L1-solver against L2-solver. Experiment: We acquired QT2R data at 7T (Bruker) using two mice undergoing transient middle cerebral artery occlusion, a stroke model. The QT2R data was acquired using 2D CPMG sequence with the following parameters: axial FOV = 20 mm, matrix size = 128x96, partial phase FOV = 0.75, receiver bandwidth = 454 kHz, # slices = 8, slice thickness = 0.5 mm, TR = 2000 ms, # echoes = 32, echo spacing = 5.4 ms; SNR ~200, only even echoes were further evaluated as these are not affected by B1-error for the CPMG sequence, acquisition time = 30 min.

Methods: The optimum values of temporal regularization constant μ_i, the diagonal elements of M_i in eqs.(1) and (2), are allowed to vary voxelwise and are chosen by L-curve method as described in [3]. The spatial regularization parameter μ_S is assumed to be spatially invariant and is chosen as 1000 median(μ)-map. Eq (1) is minimized as described in [3]. Eq (2) is solved using split Bregman method [4] where L1-problem is approximated as small L2-subproblems. These small L2-subproblems are solved using modified version of sparse nonnegative least square (SNNLS) solver [5]. Usually 10-20 iterations of SNNLS solver are sufficient to solve these sub problems; however, when a degenerate solution [5] is occasionally detected, we switch to the Interior-Point Newton-like method [6] that is specific to handle such kind of solutions.

Results: Using Matlab 2012b (running on 8 core processor Intel Xeon E5620 @ 2.4 GHz), it took ~14 hours to invert QT2R data (size 128 x96) x using L1-norm solver; while it took ~2.5 hour for L2-norm solver.

Simulation: Fig.1 shows the simulated and reconstructed MWF maps at various SNR. Methods using L1- and L2-norm are visually superior to the conventional approach with reduced mean square error (MSE) and lower mean square error of the L1-based solver with lower SKL score and lower MSE of myelin water fraction. Experiment: The MWF map using L1-norm solution is similar to L2-norm for this moderately high SNR (~200) QT2R data. The average symmetric Kullback-Leibler score (SKL) commonly used to calculate the divergence between two distributions normalized to 1, between these two solutions is calculated to be 0.34. This low averaged SKL score indicates a good match between T2-distribution maps from L1- and L2-solvers.

Conclusions: Our preliminary results show that though L1-norm and L2-norm based solver returns similar results at high SNR (>200); L2-norm based solver may be more efficient in imposing similarity constraints at low SNR (<200). So, L2-norm solver could be our preferred solution for imposing similarity constraints in context of QT2R analysis.

In near future, we would investigate other possible "hybrid" filter to improve the performance of L1-norm filter at low SNR (100-150) and to test if we can get comparable results using low SNR even using L1-norm solver.

Acknowledgement: We used code shared by Dr. Michael Lustig, UC Berkeley as starting point for our L1-solver (Source: http://www.eecs.berkeley.edu/~mlustig/Software.html)