VALIDATION OF THE TEMPORAL SIGNAL CHANGE CAUSED BY ACUPUNCTURE STIMULATION WITH MULTI-BAND ACQUISITION

Tomokazu Murase1, Masahiro Umeda2, Masaki Fukunaga1, Katsumi Maruyama1, Yoko Kawai2, Yasuharu Watanabe2, Chuzo Tanaka1, and Toshihiro Higuchi1
1Neurosurgery, Meiji University of Integrated Medicine, Nantan-shi, Kyoto, Japan, 2Medical Informatics, Meiji University of Integrated Medicine, Kyoto, Japan

Introduction Typically, functional magnetic resonance imaging (fMRI) studies of acupuncture have been performed using block designs and analyzed using a general linear model (GLM). However, recent studies have questioned the equivalence of stimulations with sensations in block-design acupuncture experiments [1-2]. Furthermore, a previous study showed that prolonging of the needling sensation introduced by acupuncture needleling could occur [3]. Once, we reported that acupuncture stimulation induced specific activity that was stronger than activity after the other tactical stimulations. [4-5]. Recently, multi-band (MB) echo planar imaging (EPI) can accelerate the acquisition’s temporal resolution to excite the multi slice simultaneously is a popular acquisition for fMRI. Therefore, in this study, we examined the signal change with high temporal resolution in brain activity caused by acupuncture stimulation using MB-EPI and deconvolution analysis.

Methods Twenty-four healthy right-handed subjects (men, 16; women, 8; age range, 18–33 years) were divided into 2 groups. One group (N = 12; 8 men and 4 women) received real acupuncture stimulation with manual manipulation; the other group (N = 12; 8 men and 4 women), which was considered as the control, received tactile stimulation with sham acupuncture (noninsertive) stimulation and scrubbing stimulation. Acupuncture stimulation was applied by bidirectional needle rotation to approximately 180° with even motion at a frequency of 1 Hz. Tactile stimulation consisted of 2 types: tapping the skin at the LI4 with a size 5.88 von Frey monofilament (sham acupuncture stimulation) and scrubbing the skin on the palm using a sponge at 4 Hz.

All fMRI runs consisted of block designs with five 15-s stimulation blocks (on) interspersed between one 30-s and five 45-s rest blocks (off). All experiments were performed using a SIEMENS 3.0-T Trio MRI system with a 32 channel head array coil. The subjects underwent MB gradient echo type-EPI (MB GRE-EPI) with the following parameters: thickness, 3.5 mm; matrix, 64 × 64; field of view (FOV), 22.4 × 22.4 cm2; repetition time (TR), 1000 ms; echo time (TE), 30 ms, flip angles, 60°; MB-factor, 2; iPAT factor, 2; 36 axial slices, and 343 time points.

Data analysis was performed using a combination of analysis packages, including Statistical Parametric Mapping 8 (SPM 8) and Analysis of Functional NeuroImages (AFNI) software. The first 13 data points of each dataset were discarded to obtain the stable state. Volume registration, head motion correction, blurring were performed by SPM 8. For statistical analysis, 3dDeconvolve, which is part of the AFNI package, was used to extract the impulse response functions (IRFs) of the fMRI signals on a voxel-wise basis. First, we assumed that 60TRs, which included 15 TR periods for stimulation, were long enough for extracting IRFs. Then, the 31 tent basis functions (\(T-31\)) covering 4 to 56 TRs (relative to the stimulus onset) were used to estimate the fitting coefficient (beta estimate). To eliminate the variance in each condition of interest across subjects, a random-effects analysis was performed using a 1-sample t test at each voxel across subjects based on their individual beta maps (p < 0.001, uncorrected) and clusters with threshold size over 10 voxels (428.75ml³). Further, to examine the IRF, a cubic region of interest was defined using a set of voxels in a 4 × 4 × 4-mm³ portion centered in the maximum signal were observed in several brain regions related to pain perception than those observed in sham acupuncture and palm scrubbing. We suggest that the delayed and long-sustained signal increases were caused by peripheral nociceptors, flare responses, and processing of the central nervous system.

Conclusion We used MB-EPI sequence and deconvolution with tent basis function for processing the fMRI data for acupuncture stimulation, and we found delayed increasing and delayed decreasing BOLD signal changes in areas related to pain perception. Further, deconvolution analyses with tent functions are considered as useful in the extraction of complicated, associated brain activity that is delayed and sustained for a long period after various stimulations.

Reference