Phenotyping assay of neuropathic pain models using selective stimulation for peripheral nerve fibers

Yuji Komaki1,2, Keigo Hikishima1,2, Shinsuke Shibata1, Masaya Nakamura1, and Hideyuki Okano1

1Keio University, Shinjuku, Tokyo, Japan, 2Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan

Purpose For the development of an effective therapy for neuropathic pain, there is a significant hurdle that achieves objective evaluation methods. As an objective evaluation method of neuropathic pain, functional magnetic resonance imaging can provide quantitative activation map of the brain using tactile stimulus. By considering properties of each fiber, stimuli were given to peripheral fiber (Aβ-, Aδ-, C-fiber) selectively to clarify the location of brain function, which made it possible to detailed evaluation of neuropathic pain. In this study, for evaluation of allodynia, we would conduct fMRI using stimulus depolarized Aβ-fiber to the two sorts of allodynia model mouse that was surgical procedure model and genetical model.

Methods Six intact adult mice (C57BL/6, male, approximately 10-week-old: CLEA Japan Inc., Tokyo, Japan), and same mice for spinal nerve ligation model, six musashi(msi)2−/− male mice (C57BL/6 background) and the same number of wild type male littermates [1] were used for this study. Functional MRI was performed using a 7.0 tesla MRI (Biospec; 70/16 Bruker BioSpin, Ettlingen, Germany) with a cryogenic quadrature RF surface probe (CryoProbe; Bruker BioSpin AG, Fällanden, Switzerland). T2WI; TE: 48ms, TR: 6100ms, RARE factor: 8, number of averages: 4, spatial resolution: 75 x 75 x 300 (μm)3, number of slices: 52. BOLD fMRI; TE: 20ms, TR: 1000ms, flip angle: 55°, number of averages: 1, spatial resolution: 200 x 200 x 500 (μm)3, number of slices: 16. Thirty minutes before acquisition of fMRI, the anesthesia was altered from isoflurane to medetomidine (Orion Phama) with following administration (s.c. 0.3 mg/kg bolus, 0.6 mg/kg/h infusion) [2]. This experiment focused on 2,000Hz electric stimulation: this stimulation selectively depolarizes Aβ fiber specifically, which does not normally provoke pain. To perform a group data analysis of fMRI, a results was created using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK) and tailored software in MATLAB. The threshold for this statistics was p<0.05 (corrected by Family wise error rate using Bonferroni's approach).

Results Preoperative and postoperative fMRI were shown as Cyan and Magenta, respectively (Figure 1). The stimulation of 2,000Hz to healthy mice elicited activation only in contralateral S1, whereas the stimulation to neuropathic pain model mice elicited activation in ACC, thalamus besides S1. fMRI in msi2−/− and msi2+/+ mice were shown as Green and Magenta, respectively (Figure 2). For the measurement of normal mice, BOLD activation was observed only in S1. On the other hand, for the measurement of knockout mouse, BOLD activation was observed in ACC and thalamus in addition to S1.

Discussion In accordance with the development of neuropathic pain, functional MRI detected the activation in the ACC, which was not observed preoperatively. Consistently, in functional MRI, We observed activation of ACC in msi2−/− mice, which is not activated in wild mice. Decrease of pleiotrophin, neurite outgrowth-promoting factor, which is one of target gene of msi2, is expressed in msi2−/− mouse. Abnormal projection in sensory fibers (Aβ fibers), which input to spinal cord from dorsal root ganglion during development, is associated with allodynic phenotype.

Conclusion Their brain activities with stimulus were observed and difference of activities in ACC was detected. Precise method of stimulus enables to conduct objective evaluation. Establishment of novel pain evaluation tool by fMRI would contribute to realization of regenerative medicine for neuropathic pain.