FUNCTIONAL CORRELATES OF IMPAIRED WORKING MEMORY IN MS PATIENTS: A MULTICENTRE STUDY
Paola Valsasina, Maria A. Rocca, Alvino Bisecco, Khaled Abdel-Aziz, Frederik Barkhof, Christian Enzinger, Franz Fazekas, Antonio Gallo, Hanneke Huist, Xavier Montalban, Nils Muhler, Gianna C Riccitelli, Alex Rovira, Gioacchino Tedeschi, Giancarlo Comi, and Massimo Filippi

1Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy, 2Dept. Brain Repair and Rehabilitation, Institute of Neurology, UCL, London, GB, United Kingdom, 3Department of Radiology, Free University Medical Centre, Amsterdam, NL, Netherlands, 4Division of Neuroradiology, Medical University of Graz, Graz, AT, Austria, 5Department of Neurology, Medical University of Graz, Graz, AT, Austria, 6Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Naples, NA, Italy, 7Department of Neurology-Neuroimmunology, Vall d’Hebron University Hospital, Barcelona, CT, Spain, 8Department of Radiology, Vall d’Hebron University Hospital, Barcelona, CT, Spain, 9Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy

Target Audience. Neurologists and Neuroradiologists.

Purpose. In this multicentre study, we assessed the fMRI correlates of frontal lobe dysfunction in multiple sclerosis (MS) patients with and without cognitive impairment to prove the validity of this technique for treatment monitoring in the context of clinical trials.

Methods. This study was conducted at six European sites using 3.0 Tesla scanners. FMRI scans during a N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls (HC). MS patients underwent the Rao battery and the Wisconsin Card Sorting test. Patients with at least two abnormal tests were considered as cognitively impaired (CI). FMRI data were analysed modelling regions showing a load-dependent activation/deactivation with increasing task difficulty. FMRI activity was compared between HC and all MS, as well as between HC, cognitively preserved (CP) and CI patients. Correlations of fMRI activity with clinical, neuropsychological and conventional MRI variables were also assessed.

Results. Twenty-two MS patients were cognitively preserved (CP) and 20 (47%) were CI. Task-related activations/deactivations were found in similar regions for HC and MS (Figure 1). Compared to HC, MS showed a reduction of fMRI activity with increasing task difficulty in the bilateral parietal, left inferior frontal and left middle frontal regions. While CP showed fMRI patterns similar to those detected in HC, CI patients had a distributed reduced fMRI activity (in bilateral parietal and frontal regions, and in the bilateral insula) and fMRI deactivations (in the bilateral precuneus, posterior cingulate cortex and parahippocampal gyrus) compared to HC and CP patients (Figure 2). A failure of activation of frontal regions was correlated with a longer disease duration, higher T2/T1-lesion volumes, lower Z-score of global cognitive, attention-executive and visual functions.

Discussion and Conclusion. This multi-centre study, conducted on a homogenous MRI and cognitive dataset, shows that integrity of frontal lobe activity is associated with a better cognitive profile in MS patients and contributes to validate the use of fMRI in treatment trials.

References.