Working memory deficit in children treated for cerebellar medulloblastoma: An fMRI study
Duc Ha Hoang1, Anne Pagnier2, Emilie Cousin3, Karine Guichardet2, Isabelle Schiff2, Fanny Dubois-Teklali2, and Alexandre Krainik4
1Grenoble Institute of Neurosciences, Grenoble, France, 2Department of Pediatrics - Grenoble University Hospital, Grenoble, France, 3Laboratory of Psychology and Neurocognition - University Pierre Mendès France’s, Grenoble, France, 4Department of Neuroradiology and MRI - Grenoble University Hospital, Grenoble, France

Backgrounds and Purposes

Medulloblastomas are the most common malignant brain tumors in childhood. Children treated for a cerebellar medulloblastoma demonstrated cognitive disorders in working memory (WM), especially visuospatial WM, leading to an impairment of school performance.1 The purpose of recent study is to describe the cerebellar involvement in specific cognitive deficits observed in children treated for cerebellar medulloblastoma.

Materials and Methods

Groups: Nine healthy volunteers children (11.1± 2.2 yo), were compared to 5 patients treated for cerebellar medulloblastoma (12.1±0.6 yo). All subjects were native French speakers, right-handed, with a global IQ of 70-130. The patients were after 6 years of age (homogeneous population in terms of brain maturation) and at least six months after the end of all treatments. Healthy subjects have without any history of psychiatric, neurological or other major medical disorder.

Task Procedures: The participants were examined through 4 block-design 1-back tasks in the sensorial modality (visual/auditory) and the nature of information (verbal/nonverbal) during fMRI acquisitions. Each task consisted of 4 blocks and each block composed 7 stimuli. Each stimulus was presented for 2000 ms, followed by a delay of 3000 ms before the next trial. Subjects were instructed to be fast and accurate in their responses before the exam. Both accuracy and reaction time (RT) were collected for each response.

MRI Acquisitions: All MRI data were acquired on 1.5T Achieva MR Scanner (Philips Healthcare®) using a 8-channel head coils. fMRI scanning was performed with a gradient-echo/T2* weighted EPI method. Slice thickness: 4 mm; voxel size: 4x4x4 mm; 256 mm field of view; main sequence parameters: TR=5 s, TE=50 ms, flip angle=77°, 56 dynamics. Finally, a 3D T1-weighted was acquired (FOV: 256 mm; resolution: 1x1x1 mm; 128 axial spiral slices).

Data Analysis: Reaction time and accuracy was recorded for each subject in ANOVA for behavioral performance. Standard image reconstruction, preprocessing and statistical analyses were performed using the Statistical Parametric Mapping (SPM8) and the Spatially Unbiased Infra-tentorial Template (SUIT)2 for viewing cerebellar topography with BOLD activations.

Results

In the healthy subjects group: the sensory modality activated bilaterally occipital cortex during visual stimuli presentation and superior temporal gyrus during auditory tasks; the verbal tasks activated bilaterally middle temporal gyrus with left-side predominance whereas the nonverbal presentation activated the occipital cortex with right-side predominance; greater BOLD activations were found in the left posterior cerebellar lobe for nonverbal vs. verbal contrast and they were presented in this region for visual vs. auditory contrast (figure 1).

In patients group: 4/5 patients had a WM deficit following a resection of the left posterior cerebellar lobe (lobule VI-IX, Crus I and II) and inferior part of vermis; the only patient without WM deficit was the only one without cerebellar hemispheric resection (figure 2).

Conclusion

The cerebellum plays the same role in WM in children as that has been previously described in adults.4 The left posterior cerebellar lobe may involve the visuospatial WM4.