Long-term alterations of brain NAA, Cho and Cr in extremely preterm adolescents are associated with cognition
Alan Bainbridge1, Cheong LY Jeannie2,3, Peter J Anderson4, Deanne K Thompson1, Alan Connelly5, Peter J Lally5, Nicola J Robertson6, and Lex W Doyle2,3
1Medical Physics, UCLH NHS Foundation Trust, London, United Kingdom, 2Royal Women's Hospital, Melbourne, Australia, 3Murdoch Children's Research Institute, Melbourne, Australia, 4University of Melbourne, Melbourne, Australia, 5Florey Institute of Neurosciences and Mental Health, Melbourne, Australia, 6Institute for Women's Health, University College London, London, United Kingdom

Introduction: Preterm birth is associated with increased risk of white matter (WM) injury resulting in disrupted WM maturation and neurodevelopmental deficits. Extremely preterm infants (EP; born <28 weeks' gestation) are at increased risk of cerebral palsy, and other motor and cognitive impairments 1. Simultaneously raised choline (Cho)/creatine (Cr) and reduced N-acetylaspartate (Naa)/Cho in posterior white matter, measured using 1H Magnetic Resonance Spectroscopy (MRS), predict abnormal 1-year motor outcome in infants born very preterm (<32 weeks' gestation) 2. It is unknown whether the relationship between 1H MRS metabolite peak-area ratios with neurodevelopment persists into adolescence. We aimed to compare the metabolite ratios NAA/Cr, Cho/Cr and NAA/Cho between EP and term controls at age 18 years and to explore the association between these metabolite ratios and full scale IQ at 18 years.

Methods: 283 subjects, comprising a regional cohort of 150 EP adolescents and 133 term controls born in 1991-92 in the state of Victoria, Australia, underwent MRS at 18 years of age. Studies were performed in 2 centres, each equipped with a Siemens 3T Magnetom Trio scanner. 1H MRS was obtained from a 20x15x10 mm voxel centred on the left posterior cingulate (PC) WM using a 12 channel receive-only head coil and a PRESS acquisition (TR = 3000ms, TE = 135ms, 128 averages). Spectra were fitted using LCModel3 and the metabolite ratios NAA/Cr, Cho/Cr and NAA/Cho were calculated. Statistics were performed using STATA 13.0 (StatCorp, Texas, USA). Ratios were compared between groups using t-tests and correlated with IQ (two-subtest version of the Wechsler Abbreviated Scale of Intelligence) at 18 years using linear regression.

Results: Mean (SD) gestational age at birth, age at scan, IQ and metabolite ratios are shown in the Table. NAA/Cr and Cho/Cr were lower in EP subjects compared with controls, whereas NAA/Cho was higher. No correlation was seen between metabolite ratios and IQ in controls (Cho/Cr: \(R^2 = 0.004 \), coefficient (coeff) = -4.4, p = 0.49; Naa/Cr: \(R^2 = 0.012 \), coeff = 9.1, p = 0.25; Naa/Cho: \(R^2 = 0.001 \), coeff = 0.3, p = 0.40). Correlation coefficients were significantly different in EP subjects compared with controls for Cho/Cr and Naa/Cho, but not Naa/Cr; see figure (coefficients EP group, p-values for difference compared with controls: Cho/Cr: \(R^2 = 0.032 \), coeff = 13.2, p = 0.04; Naa/Cr: \(R^2 = 0.001 \), coeff = 3.1, p = 0.56; Naa/Cho: \(R^2 = 0.050 \), coeff = -1.9, p = 0.03)

Discussion: This is the first study to report long term brain metabolite differences in PC WM in EP with Naa/Cr; Naa/Cho and Cho/Cr significantly different compared to controls. The PC cortex is a highly connected region and has an important role in cognition 5. In EP subjects at term Cho/Cr is raised in those with poor motor outcomes 1. However the current study shows that at age 18, Cho/Cr is decreased in EP subjects, suggesting an increased rate of aging related to a reduced turnover of cells 5. The correlations between IQ and MRS in EP subjects but not controls may help to further elucidate cognitive impairment associated with EP birth.

References