Cerebral Phosphorus Metabolites Profiling of Parkinson’s Disease Patients at 7T
Xiao-Hong Zhu1, Byeong-Yeul Lee1, Susan Rolandelli2, Paul Tuite2, and Wei Chen1
1CMRR, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, United States; 2Department of Neurology, University of Minnesota Medical School, MN, United States

Introduction

The utility of the in vivo 31P MRS technique has been enhanced significantly at high/ultrahigh fields owing to the high MR sensitivity, better spectral resolution and shorter longitudinal relaxation time (T1), which allows non-invasive and reliable assessment of various phosphorus metabolites including the high-energy phosphate compounds within reasonable scanning time1-2, thus, it is particularly important for studying impaired bioenergetics associated with various neurological diseases. Parkinson’s disease (PD) is a common neurodegenerative movement disorder. It is believed that impaired energy metabolism due to mitochondrial dysfunction contributes to the pathogenesis of the PD3-6. However, better understanding of the underlying mechanisms of the disease requires reliable in vivo evidence from human patients. In this study, we aim to obtain cerebral phosphorus metabolites profiles in PD patients and matched controls (CT) with quantitative 31P MRS measurements at 7T.

Methods

Seven PD patients (Age: 54-73 years, 4M/3F) and seven matched controls participated in this study. All MR measurements were conducted at 7 Tesla/90 cm actively shielded human scanner (Siemens) with a surface coil probe placed over the visual cortex for data acquisition. This probe consists of a quadrature 1H coil for anatomic imaging and B0 shimming and a single loop 31P coil (Dia.=5cm) for collecting 31P MRS and MRSI data. A small sphere containing reference phosphorus compound was placed at center of the 31P coil for power calibration and optimization. For each subject, 31P MR pulse-acquired spectra (NT=320, TR=3s and FA=84°) and 3D-MRSI data (FOV=12x12x9 cm, matrix=7x7x5, TR=1.2s, total NT=896 and FA=68°) were acquired with 300μHs hard pulse. A 3D-MRSI data was also obtained after each human scan session from a spherical ATP phantom (containing 10mM ATP, 10.3mM [Mg2+] and 45mM [Na+] at pH of 7.0) with the same loading and position as the subject’s head for calibration and quantification of brain metabolite concentrations. Software package jMRUI (v5.0) and AMARES method were used for spectral fitting and quantification of following phosphate resonances: phosphoethanolamine (PE), phosphocholine (PC); intracellular inorganic phosphate (Pi) and extracellular Pi (Pi(E)); glycerophosphoethanolamine (GPE); glycero-phosphocholine (GPC); phosphocreatine (PCr); adenosine triphosphate (γ- and β-ATP); and nicotinamide adenine dinucleotides (NAD). The resulted integrals were corrected for the saturation effects with relevant T1 and flip angle (FA) information and were used to derive the metabolites concentrations based on [ATP] of the same subject as an internal standard. The ATP concentration of each subject was determined via comparing the ATP signals of identical 3D-MRSI voxels within the human brain and the ATP phantom, respectively. Student t-test was used for statistical analysis and a p<0.05 was considered statistically significant. All results were presented as Mean±SD.

Results

Figure 1A displays the experimental setup and the 1H MRI of human brain and corresponding ATP phantom. A typical in vivo 31P spectrum of human visual cortex is shown in Fig. 1B which demonstrates excellent sensitivity and spectral quality achievable at 7T, thus, leading to reliable detection and quantification of the phosphorus metabolites in vivo. Direct comparison of the PD group (mean disease duration of 7 years) with age matched CT group (n=7) revealed almost identical metabolites profiles except a small trend of lower ATP and PCr in PD patients. However, as shown in Figure 2, when dividing the PD group according to gender, significant differences in PE, Pi contents and metabolites ratios of Pi/PCr and Pi/ATP were observed between the male and female PD groups, which was not the case in the CT subjects.

Discussion and Conclusion

In the present study, although the number of PD patients being studied so far is relatively small (4M/3F), distinct phosphorus metabolites profiles in male vs. female patients have been revealed. This only becomes possible with the high sensitivity and reliability of the in vivo 31P MRS achievable at high/ultrahigh field. The interesting observation of the metabolites differences between male and female PD groups has provided direct evidence regarding the involvement of altered energy metabolism and phosphorus lipid metabolism in the PD process. Further investigation is needed, which could give useful insights into the underlying mechanism and the potential contribution of the gender difference in the disease. In addition to demonstrate the superior sensitivity and quality of the 7T human 31P MRS data, this work indicates that in vivo 31P MRS at high/ultra-high field could provide an important and powerful tool for studying neurodegenerative diseases such as PD.

Acknowledgement

NIH grants NS057560, NS041262, NS070839, P41 EB015894, S10 RR026783 and P30 NS076408; and the Keck Foundation support this work.

References