In-vivo tracking of 19F-labeled natural killer cells with MRI in lymphoid tumor model
Kai D. Ludwig¹, Jeremy W. Gordon¹, Myriam N. Bouchlaka², Christian M. Capitini², Bryan P. Bednarz¹,³, and Sean B. Fain¹,³
¹Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ²Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States, ³Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States

Target Audience: Researchers and clinicians interested in immunotherapeutic cell-tracking with 19F MRI.

Purpose: Tumor-specific immunotherapy is emerging as a novel treatment paradigm for patients with metastatic tumors incurable with conventional therapies. Natural killer (NK) cells are important innate immune effector cells shown to have anti-tumor effects against hematological and non-hematological cancers [1-3]. Often, lack of knowledge on trafficking patterns and NK cell biology limits the efficacy of adoptively transferred NK cell’s anti-tumor response and clinically-approved reagents are not yet available. Labeling of various immune cells in-vivo with fluorinated compounds has allowed for detection and cell-tracking via 19F MRI [4-5], but to date NK efficacy of adoptively transferred NK cell's anti-tumor response and clinically-approved reagents are not yet available. Labeling of hematological and non-hematological cancers [1-3]. Often, lack of knowledge on trafficking patterns and NK cell biology limits the purpose of this study is to determine the trafficking pattern of 19F-labeled NK cells in-vivo and how they mediate their anti-tumor effects in a humanized mouse model of pediatric cancers.

Methods: Animals: Two healthy mice and one lymphoma tumor-bearing mouse were used for this study. Mice were anesthetized with either 1.5% isoflurane (Iso) or ketamine/xylazine (Ket/Xyla) (2mg/10g Ket, 0.2mg/10g Xyla), monitored with a respiration pad and maintained at 36°C using a warm-air blower. Cells: Human NK (hNK) and mouse NK cells isolated from healthy donor peripheral blood mononuclear cells were cultured ex-vivo for 2 weeks. Mouse NK cells were initially used due to ease of availability. NK cells were incubated for 24 hours in a commercially available perfluoropolyether (PFPE) tracer agent (Celsense Inc., Pittsburgh PA). hNK cells were subsequently washed and injected intravenously into immunodeficient mice. MR: NMR was performed on a 9.4T Varian UI-400 (Agilent Technologies, Santa Clara, CA) spectrometer to verify successful uptake of the PFPE agent into NK cells. Imaging was performed on a 4.7T Varian small animal MRI system using a volume quadrature coil tunable to 19F (187.9MHz). Coronal 19F images were acquired using a spin-echo sequence (1.1x1.1mm² in-plane resolution, 2mm slice thickness, 16 echoes, 40 averages, ~42 minutes total scan time). A 19F reference vial (2.3x10¹⁶ 19F spins/mm³) was placed contralateral to the tumor for in-vivo quantification. T₁-weighted GRE 1H images were also acquired to visualize anatomy.

Results and Discussion: A dose-dependent response of 19F signal was shown in mouse NK cells in duplicate (Fig. 1). NMR spectra of the separated cells and its supernatant confirmed that 19F signal originated from within the hNK cells, rather than the supernatant (Fig. 2). 19F-labeled hNK cells were then injected into an immune deficient mouse and 19F signal accumulation was noted intra-tumor and on the periphery of the tumor (arrows in Fig 3). However, 19F background signal contamination was observed (arrowheads in Fig. 3) due to Iso anesthesia. Iso was compared to Ket/Xyla to determine the extent to which Iso impeded interpretation of 19F images. The results point to a strong background 19F signal from Iso contamination (Fig. 4).

Conclusions: 19F labeling of natural killer cells has been confirmed in-vitro, both with imaging and spectroscopic analysis. hNK infusion into a lymphoid tumor-bearing mouse showed that hNK cells can be successfully detected in-vivo, but there is some variance in the 19F signal in the region of tumor. Given confounding fluorine signal contamination from Iso gas anesthesia, future studies will utilize Ket/Xyla anesthesia to eliminate background fluorine. NK cells can be labeled with 19F and detected in-vitro and in-vivo, but background fluorine signals can interfere with detection by MRI.