In vivo real time metabolic imaging using frequency selective bSSFP and hyperpolarized compounds
Najat Salameh1, Jean-Noël Hyacinthe2, Andrea Capozzi1, and Arnaud Comment1

1Institut de Physique des Systèmes Biologiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Haute École de Santé, University of Applied Sciences Western Switzerland, Geneva, Switzerland

Target audience hyperpolarized media (gas and non-gas), sequence development, metabolism

Introduction
The specific constraints of hyperpolarized (HP) MRI are linked to the single-shot nature of the experiments due to the unavoidable decay of the enhanced polarization. Several acquisition strategies have been developed to rapidly image the spatial distribution of multiple compounds in order to track the metabolism of HP substrates in vivo, including EPI1, spiral CSI2 or compressed sensing MRSI3. Some of the techniques use RF pulse properties to design interleaved acquisition of different substrates by frequency-specific excitation4 or multi-band excitation schemes5, whereas other approaches use the inherent frequency selectivity of MRI sequences using multi-echo6 and/or SSFP based techniques7. From these last developments, we propose in this study an improved strategy for real time imaging of HP pyruvate and lactate in mice brain and liver.

Methods
A 3D bSSFP-based sequence (Fig.1) was implemented on a 9.4 T MR scanner. A quadrature dual tuned 1H/13C surface coil was used for transmit and receive. All the parameters were optimized according to our hardware limitations to achieve a spatial resolution of 1×1×5 mm3. The sequence was first validated in a phantom composed of 2 concentric compartments (inner part filled with 250 mM [1-13C]lactate, and outer part with 250 mM [1-13C]pyruvate). The simulations gave a good chemical shift selectivity for an offset difference of 1450 Hz (Fig.2) and determined the optimal set of parameters: FOV 30×30×10 mm3; matrix 32×32×2; TE/TR = 2.25/4.5 ms; 250 hard pulse with flip angle = 22º. The different metabolites were imaged using an interleaved approach with a delay of 1.5 s between scans. The sequence was validated in vivo in mice after injection of hyperpolarized [1-13C]pyruvate (3M prepared with TEMPO). Metabolic images were acquired in the mouse brain, as well as in the liver (shim and acquisition triggered with respiration). A Hamming filter on k-spaces was used.

Results and Discussion
Good selectivity between metabolites in the 2-compartment phantom is shown in Fig.2. Fig.3 illustrates the time course of the different metabolites in the entire brain. Fig.4 and Fig.5 show the metabolic time course in the liver.

Conclusions
We showed in this study that with the proposed technique it becomes feasible to have a good spatial and temporal resolution for metabolic imaging with hyperpolarized compounds. However, robust analysis of the time-resolved information (e.g. exchange) would require the knowledge of the B1 excitation map, to avoid tedious multiple parameters fitting.

Acknowledgements
This work is supported by the Swiss National Science Foundation, under grant number 200021-124901, by the Centre d’Imagerie BioMédicale (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL and the Leenaards and Jeantet Foundations.

References