Kinetic modeling of Hyperpolarized 13C-Pyruvate with Arbitrary RF flip angles in cancer
Naeim Bahrami1, Christine Leon1, Cornelius Von Morze1, Daniel B. Vigneron1, and Peder E.Z. Larson1
1Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, United States

Introduction- The accurate detection and characterization of cancer is still a major problem for the clinical management of individual cancer patients and for monitoring their response to therapy(1). The primary purpose of this research was to model the kinetics of hyperpolarized (HP) pyruvate and urea to provide improved characterization of cancerous tissues when using arbitrary RF flip angles in dynamic MRSI. This modeling has the ability to detect metabolic conversion and perfusion.

Methods- The kinetics of the HP pyruvate magnetization can be modeled as

\[
\begin{bmatrix}
\frac{d}{dt} M_p(t) \\
\frac{d}{dt} M_l(t) \\
\frac{d}{dt} M_a(t)
\end{bmatrix} =
\begin{bmatrix}
-p_p & -K_{pl} & -K_{pa} & 0 & 0 \\
-K_{pl} & \rho_l & 0 & 0 & 0 \\
-K_{pa} & 0 & \rho_a & 0 & 0
\end{bmatrix}
\begin{bmatrix}
M_p(t) \\
M_l(t) \\
M_a(t)
\end{bmatrix}
\]

where \(p_p\), \(\rho_l\), and \(\rho_a\), are the longitudinal magnetization relaxation rates for pyruvate, lactate and alanine, respectively, \(K_{pl}\) is the conversion rate from pyruvate to lactate, and \(K_{pa}\) is the conversion rate from pyruvate to alanine. The reverse conversion rates were assumed to be negligible. The data was modeled as discrete intervals of relaxation and conversion, followed by RF excitation, and the methods can apply for arbitrary flip angles. The 3D dynamic MRSI used multiband excitation with small flip angles of 6 degrees for pyruvate and urea to minimally perturb their magnetization and larger flip angles of 12 degrees for lactate and alanine to improve SNR (2). Non-linear least squares (NLLS) with Levenberg–Marquardt’s (LM) approach was used fit the signal (3). We also found that obtaining a good fit with our SNR required assuming that the relaxation rates, \(\rho_l\), of pyruvate, lactate, and alanine were identical. We also speculated that the ratio of total lactate signal to total pyruvate signal would be commensurate with \(K_{pl}\). In other words, summing all time points and assuming a constant ratio, we speculate: \(\frac{\sum_{t=1}^{N_l} L(t)}{\sum_{t=1}^{N_p} P(t)} = C \cdot K_{pl}\).

Results- Fig. 1 & 2 show elevated \(K_{pl}\) values in primary tumors and a metastasis. Spatial heterogeneity in the tumor can be observed. Fig. 3 shows the correlation between \(K_{pl}\) and this signal ratio is approximately linear, suggesting either could be used to measure metabolism.

![Fig 1. Mapping of \(K_{pl}\) in different axial slices: a) prostate cancer (arrow-metastases), b) kidneys, c) liver.](image)

![Fig 2. \(K_{pl}\) values in four different tissues among seven transgenic mice with prostate (n=4) or liver (n=3) cancer.](image)

![Fig 3. Correlation between \(K_{pl}\) and total lactate to total pyruvate signal across all tissues (correlation coefficient of 0.95).](image)

Discussion- The measurement of \(\rho_l\) and metabolic conversion ratio are of practical importance in choosing optimal pulse parameters. In this study, we also measured the \(\rho_l\) of tumor hyperpolarized C13 pyruvate and urea. In tumor, the tissue request for blood is high but in a more uncontrolled way because of the abnormality of blood vasculature and circulation inside the tumor. The conversion constant from pyruvate to lactate is high in cancerous tissue with respect to the healthy tissues and the proportional variation of \(K_{pl}\) with lactate signal to pyruvate signal ratio is significant. In the area that is suspected to be a necrotic tissue, the vasculature network has very low concentration and therefore the amount of urea perfusion is low. The ratio of pyruvate and its products, including lactate and alanine, to urea is higher in cancerous tissues in comparison to healthy tissues which can a marker for cancerous tissue detection with dynamic MRSI and multiband excitation.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>(\rho_l) of Urea (1/s)</th>
<th>(\rho_l) of Pyruvate and its products (1/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>Healthy Liver</td>
<td>0.075</td>
<td>0.061</td>
</tr>
<tr>
<td>Cancerous Liver</td>
<td>0.13</td>
<td>0.077</td>
</tr>
<tr>
<td>Prostate Tumor</td>
<td>0.15</td>
<td>0.083</td>
</tr>
</tbody>
</table>