Joint estimation of precontrast T_1 and DCE-MRI perfusion and permeability parameters significantly improves precision of parameter estimates

Ben R Dickie1, Anita Banerji2,3, Catharine M West2, and Chris J Rose2,3

1Christie Medical Physics and Engineering, Christie Hospital, Manchester, Greater Manchester, United Kingdom, 2Centre for Imaging Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom, 3Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom, 4Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom

TARGET AUDIENCE Imaging scientists who use DCE-MRI to study perfusion and permeability, particularly in preclinical and clinical studies of cancer.

PURPOSE DCE-MRI can be used to spatially map estimates of biophysical parameters related to tumour perfusion and capillary permeability [1]. These parameters are commonly used in pre-clinical and clinical trials of novel anti-vascular and anti-angiogenic agents as they can provide early quantitative measurements of treatment efficacy [2]. Improving the precision of parameter estimates is important ethically and economically, as greater precision can help minimise the number of animal or human subjects required. We present a novel method for estimating DCE-MRI perfusion and permeability parameters from data acquired using a typical DCE-MRI protocol. The kebabon, and cut the other...

THEORY DCE-MRI involves the acquisition of a series of images during the administration, uptake and washout of a contrast agent. Biophysical parameters related to tumour perfusion and capillary permeability may be estimated by fitting a tracer kinetic model, such as the two-compartment exchange model (2CXM: Eqn. 1), to measured signal-time curves via the spoiled gradient echo equation (Eqn. 2):

$$C(t) = F_p A e^{-K_e t} + (1 - A) e^{-K_p t}$$ \hspace{1cm} (1)

$$S(T_1, M_0, C_t) = M_0 (\sin(\alpha t) e^{-T R C T R} + V_f e^{-T R C T_R})$$ \hspace{1cm} (2)

where C_t is the modelled contrast agent concentration, F_p, A, K_e and K_p are the 2CXM parameters, AIF is the arterial input function, S is the modelled MR signal, T_1 is the pre-contrast T_1, M_0 is the equilibrium longitudinal magnetization, t is the T_1 relaxivity of the contrast agent, and α and TR are the flip angle and repetition times of the MR sequence. Conventionally, T_1 and M_0 are estimated prior to model fitting using a dedicated MR experiment. This can be done using a variable flip angle (VFA) experiment by fitting Eqn. 2 (with $C(t) = 0$) to signal intensities acquired at each of a number of flip angles. The estimates of T_1 and M_0 are then substituted into Eqn. 2 as fixed parameters, and $C(t)$ is varied (by performing an optimization) to fit the modelled signal to the measured dynamic data. In this approach T_1 and M_0, and the 2CXM parameters, are estimated sequentially. Measurement error in the VFA experiment will propagate through to error in T_1 and M_0, estimation, to errors in calculation of $C(t)$, to errors in estimates of the biophysical parameters of ultimate interest. Here we present an alternative approach, which recognises that while DCE-MRI sequences are not designed to measure ground truth using joint versus sequential estimation.

RESULTS Table 1 shows that joint estimation leads to significant improvements ($p < 0.05$) in the precision of all 2CXM parameters in the motion-free data. Joint estimation of F_p and v_p, in the registered motion-corrupted data are significantly more precise than for sequential estimation. Figure 1 shows better agreement with ground truth using joint versus sequential estimation.

CONCLUSION Joint estimation improves the precision of all tumour perfusion and permeability measurements in motion-free data, and of F_p and v_p, in registered motion-corrupted data. Improved registration should result in significantly more precise estimates of F_p and v_p, also. In the context of DCE-MRI studies of cancer, joint estimation may help reduce required sample sizes, conferring both ethical and economic benefits.

ACKNOWLEDGEMENTS This work was funded by Christie Medical Physics and Engineering, Christie Hospital, UK. Additional acknowledgements to Alex Morgan for providing the acquired respiratory tracking data for producing the displacement maps and tissue masks used to generate the synthetic data.