Black-blood vessel wall imaging using SLR designed velocity selective RF pulse

Yunduo Li1, Lirong Yan2, Mayank Jog2, Robert Smith2, Karen Ying3, Rui Li4, Chun Yuan4, and Danny JJ Wang2

1Department of Biomedical Engineering, Tsinghua University, Beijing, China, 2Neurology, UCLA, CA, United States, 3Department of Engineering Physics, Tsinghua University, Beijing, China, 4Center for Biomedical Imaging Research, Tsinghua University, Beijing, China

Target audience: MR scientists and clinicians interested in vessel wall imaging.

Purpose: Blood-suppressed (black-blood [BB]) MRI methods are widely used in various cardiovascular applications and particularly for vessel wall imaging. Several techniques have been proposed for suppressing the signal from flowing blood, including double inversion-recovery (DIR) and motion-sensitized driven-equilibrium (MSDE) techniques1, 2. Compared to conventional spatial inversion pulses, velocity-selective (VS) inversion RF pulse designed using the Shinnar-Le Roux (SLR) algorithm has the advantage of being independent on spatial location resulting in wider image coverage for abdominal and peripheral MR angiography (MRA) applications3. The purpose of the present study was to present a method for black-blood vessel wall imaging using SLR designed VS RF pulse to invert the spins of the flowing blood while leaving the static tissue undisturbed.

Methods:

RF Pulse Design: The Shinnar-Le Roux algorithm converts the problem of RF pulse design into that of FIR filter design1, which allows the design of RF pulse to become a straightforward computational process and the inverse problem of non-linearity Bloch equations to be solved directly for any flip angles4. In the case of vessel wall imaging, a pulse which can invert the high-velocity spins is needed. We designed a high-pass inversion pulse using the Shinnar-Le Roux algorithm. Identical bipolar gradients of trapezoidal shapes are applied during each interval between two RF hard pulses to produce velocity encoding while satisfying the hard pulse approximation in Shinnar-Le Roux algorithm4. For imaging the aorta, the design targets were: $M_z = 1$ for velocities below ±20cm/s and $M_z = -1$ for velocities between ±20cm/s and ±150cm/s. The total duration of the pulse was 15.86ms. A trade-off is considered between the pass-band ripples and the sharpness of the transition-band.

The pulse and gradient waveforms are shown in Fig.1. The simulated velocity selective profile is shown in Fig.2 (blue solid line).

Results: Simulation results shown in Fig.2 demonstrate that the flip angle, the velocity selectivity, the pass-band ripples and the sharpness of transition-band all correspond well to the design targets. Results of flow phantom studies shown in Fig.2 verify that the designed pulse can: (1) invert flowing spins of high velocity; (2) leave static spins undisturbed and work relatively well in the low-velocity range. Results of in-vivo studies shown in Fig.3 indicate that (1) the signal of the blood was suppressed after the TI of 700ms; (2) the signal of the static tissue was bright so that the vessel wall of the aorta is clearly shown.

Discussion and Conclusion: In this proof of concept study, we presented a novel method for aortic vessel wall imaging using velocity-selective preparation pulse. Simulation and flow phantom results demonstrate the feasibility of VS inversion RF pulse using SLR algorithm. In-vivo studies showed that this novel method can be used to image the vessel wall of the aorta. In addition, our method enables the pulse designer to explicitly trade-off among important parameters such as pulse duration, cut-off velocity and pass-band ripples. Therefore it can be used for imaging other vasculatures such as carotid and peripheral arteries.

References: