Three-Dimensional Late Gadolinium Enhancement with Adaptive Inversion Time

Markus Henningsson1, Frank Eschbach1,2, Giel Mens3, Reza Nezafat4, Sebastien Roujol4, and Rene Botnar1

1Imaging Sciences & Biomedical Engineering, King’s College London, London, United Kingdom, 2Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 3Philips Healthcare, Best, Netherlands, 4Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

Introduction: 3D Late Gadolinium Enhancement (LGE) is susceptible to artifacts arising from incorrect delay time between the inversion pulse and data acquisition1. Typically, the optimal inversion time is determined using a Look-Locker (LL) scan prior to the 3D LGE and kept constant throughout the scan. However, changes in the cardiac rhythm and contrast material wash-out may influence the optimal inversion time, leading to artifacts if the inversion time is not appropriately adjusted2. Here we investigate a new 3D LGE method whereby the inversion time may be adapted to account for heart rate changes and contrast material wash-out.

Methods: The proposed 3D LGE approach with adaptive inversion time (3D LGEa) was implemented by interleaving a number of LL scans with multiple k-space subsets of a single Cartesian 3D LGE scan, as shown in Figure 1. As such, a LL was acquired before each 3D LGE k-space subset and utilized to determine an updated inversion time which was prospectively applied to the 3D LGE. The 3D LGEa was acquired during free-breathing while the interleaved LLs were acquired during breath-holds.

Phantom experiments: contrast wash-out was simulated in a phantom experiment by pausing the LGE scan and replacing a vial with one with slightly higher TI (dynamic TI). Pauses were inserted twice, at regular intervals, to replace the dynamic TI vial. The TI values for the dynamic vial therefore changed from 450 ms to 480 ms, and then 590 ms. A vial with fixed TI=800 ms was also included in the phantom scan. A scan was performed with 3D LGEa to null the dynamic TI phantom where LL was performed at each pause to measure the optimal TI. Additionally, a similar 3D LGE scan was performed with static TI (3D LGEs) which was optimized to null the dynamic TI phantom at the start of the scan (TI=450ms)

In-vivo experiments: The proposed method was used to scan two patients who underwent 2D LGE as part of their clinical examination. The nominal scan time was 4:10 minutes and a pencil beam navigator was used to gate (6 mm window) and correct (0.6 factor) the 3D LGE scans. For the 3D LGEa LLs were inserted at every 2:30 mins of 3D LGE scanning, regardless of respiratory efficiency. In one patient a dataset was acquired using 3D LGEs for comparison.

Results: Phantom images acquired with 3D LGEa and 3D LGEs are shown in Figure 2. For the 3D LGEs ghosting artifacts are seen in phase encoding direction (yellow arrows) and significant residual signal (green arrow) of the dynamic phantom due to inadequate nulling, while good nulling without artifacts was achieved with 3D LGEa. However, as expected, signal from the static phantom was reduced using 3D LGEa compared to 3D LGEs. In-vivo images from the two patients are shown in Figure 3. Good suppression of healthy myocardium was achieved using 3D LGEa despite scan times of 9:44 mins and 13:29 mins, respectively (including scan pauses for LL acquisition). In the scan using 3D LGEs some signal from the healthy myocardium could be seen in the 3D LGE images (white arrows).

Discussion and Conclusion: In this study we have demonstrated the feasibility of adapting the TI of a 3D LGE scan to account for contrast wash-out by interleaving with a LL. The phantom experiments indicates that 3D LGEa can be used reduce artifacts from sub-optimal TI. Despite the limited size of in-vivo data, preliminary results are promising and warrant further studies to validate this method.