Comparing 3D-QALAS with MOLLI and Multi-Echo for in-vivo myocardial T1 and T2 quantification

Sofia Kvernby1,2, Marcel Warntjes1,2, Carl-Johan Carlhäll1,2, Jan Engvall1,2, and Tino Ebbers1,2

1Institution of Medical and Health Sciences, Linköping, Östergötland, Sweden, 2Center for Medical Image Science and Visualisation, Linköping, Östergötland, Sweden

TARGET AUDIENCE
People interested in cardiac MRI, tissue characterization and quantitative MRI.

PURPOSE
Recently, a novel method has been developed for 3D interleaved T1 and T2 quantification of the entire myocardium within one single breath hold, 3D-QALAS (Kvernby et al, 2014). In this work we validate this method in-vivo by making a comparison with MOLLI-sequence for myocardial T1-mapping and multi-echo acquisitions for T2-mapping.

METHODS
The 3D-QALAS sequence is based on a 3D spoiled Turbo Field Echo sequence using inversion recovery with interleaved T2 preparation pulse. Quantification of both T1 and T2 in a volume of 13 slices covering the entire left ventricular myocardium with a resolution of $2.0 \times 2.0 \times 6.0$ mm was obtained during a single breath hold of 15 heartbeats with 3D-QALAS. Healthy volunteers with no history of cardiovascular or pulmonary disease, underwent three 3D-QALAS scans in order to investigate the precision and accuracy of the method. Images were acquired in left ventricular short axis orientation.

For comparison, a 2D 3-3-5 MOLLI acquisition (Messroghli et al, 2004) was performed for myocardial T1 quantification and a 2D two-point multi-echo GraSE EPI sequence was used for quantification of T2. The 2D mid-ventricular short axis slices were acquired with a resolution of $2.0 \times 2.0 \times 10.0$ mm. T1 and T2 values were obtained from four ROIs positioned in different sections in a mid-ventricular short axis slice.

RESULTS
The in-vivo T1 and T2 relaxation time maps of 3D-QALAS showed good agreement with the MOLLI and Multi-Echo reference methods. Results from the different methods are shown for a typical healthy volunteer in Table 1. Associated images corresponding to the different relaxation time mapping methods are shown in Figure 1.

DISCUSSION AND CONCLUSION
Relaxation times measurements obtained with 3D-QALAS correspond well with data from existing 2D mapping methods and allows a fast acquisition that provides information about both T1 and T2, making the method clinically applicable to a broader spectrum of diseases.

REFERENCES
Kvernby et al, 3D-Qantification using an interleaved Look-Locker acquisition sequence with T2-prep pulse (3D-QALAS), SCMR 2014
Messroghli et al, Modified Look-Locker Inversion Recovery (MOLLI) for high-Resolution T1 Mapping of the Heart, MRM 2004

Table 1. In-vivo data from a typical healthy volunteer measured with 3D-QALAS, MOLLI and Multi-Echo. Relaxation time measurement in different sections of the myocardium, displayed as mean value and standard deviation from a specific ROI based on three repeated measurements.

<table>
<thead>
<tr>
<th>Case</th>
<th>Section</th>
<th>3D-QALAS T1 (T1 (ms))</th>
<th>MOLLI T1 (T1 (ms))</th>
<th>3D-QALAS T2 (T2 (ms))</th>
<th>T2-ME (T2 (ms))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>Septal</td>
<td>1117.8 ± 33.0</td>
<td>1123.0 ± 53.7</td>
<td>55.2 ± 3.3</td>
<td>50.1 ± 11.2</td>
</tr>
<tr>
<td></td>
<td>Anterior</td>
<td>1066.6 ± 39.8</td>
<td>1095.7 ± 28.0</td>
<td>54.0 ± 2.2</td>
<td>49.1 ± 6.4</td>
</tr>
<tr>
<td></td>
<td>Lateral</td>
<td>1052.3 ± 41.8</td>
<td>1050.3 ± 77.0</td>
<td>54.2 ± 3.0</td>
<td>48.8 ± 11.1</td>
</tr>
<tr>
<td></td>
<td>Posterior</td>
<td>1047.0 ± 37.8</td>
<td>1060.7 ± 55.7</td>
<td>52.6 ± 7.2</td>
<td>50.6 ± 11.4</td>
</tr>
<tr>
<td>Averages</td>
<td></td>
<td>1070.9 ± 32.3</td>
<td>1082.4 ± 33.3</td>
<td>54.0 ± 1.0</td>
<td>49.7 ± 0.8</td>
</tr>
</tbody>
</table>

Figure 1. Quantitative images of a healthy volunteer. From left to right: T1-map with 3D-QALAS, T2-map with 3D-QALAS, T1-map with MOLLI and T2-map with two-point Multi-Echo.