Establishing Biomarkers of Gas-Transfer Using Hyperpolarized 129Xe Dissolved-Phase Spectroscopy in Healthy Volunteers and Subjects with Pulmonary Fibrosis

Suryanarayanan S Kaushik1,2, Matthew S Freeman1,3, Craig Rackley1, Jane Stiles1, William M Foster2, Justus E Roos1,1, H Page McAdams2, and Bastiaan Driehuys2,5
1Biomedical Engineering, Duke University, Durham, NC, United States, 2Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States, 3Graduate Program in Medical Physics, Duke University, Durham, NC, United States, 4Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States, 5Radiology, Duke University Medical Center, Durham, NC, United States

Target Audience: Hyperpolarized 129Xe MRI, Clinical Functional Lung Imaging

Purpose: Inhaled hyperpolarized (HP) 129Xe readily dissolves in pulmonary blood and tissues where it exhibits two distinct resonances in the barrier tissues and plasma (197 ppm) and in the RBCs (217 ppm). These resonances have emerged as a promising surrogate to measure pulmonary gas-transfer across the blood-gas barrier. In standard clinical practice, such measurements are made using the dilution of carbon monoxide (DLCO), but this metric is sensitive to subject compliance and is plagued by variability across institutions. Here we propose a biomarker of gas-transfer, based on global HP 129Xe spectroscopy. We establish baseline values in healthy normal volunteers and show that it is dramatically reduced 129Xe gas transfer in subjects with pulmonary fibrosis (PF).

Methods: 129Xe gas transfer spectra were acquired in 10 healthy volunteers and 5 subjects with pulmonary fibrosis (PF). Each subject received 200-ml of enriched 129Xe, polarized to 9-12% and diluted with 800-ml of N₂. The single-breath acquisition began with 200 spectra acquired on the dissolved-phase resonances at +3832 Hz above the gas-phase resonance, followed by one dedicated gas-phase reference spectrum. Spectra were taken with 512 points, bandwidth = 8/15.63 kHz, sinc pulse length = 1200 µs, flip-angle of ~15°. The first 100 dissolved-phase spectra contain signal from 129Xe in the larger vasculature, and were hence discarded. The last 100 dissolved-phase spectra were averaged together, and along with the single-gas-phase spectrum were fit to Lorentzian functions to extract the area under the curve (AUC) for each resonance. These AUCs were used to calculate the ratios of RBC-Barrier, Barrier-Gas, and RBC-Gas, which were then correlated with DLCO and subject age. The ratios were tested for significance using the Wilcoxon Rank-sum test and the correlations, were evaluated using the Student’s T-test.

Results and Discussion: Figure 1A shows a dissolved-phase spectrum from a healthy volunteer and a subject with PF, showing greatly diminished RBC uptake. As shown in Figure 1B, for healthy volunteers, the mean RBC-Barrier ratio was 0.55±0.13, whereas for PF subjects this was reduced more than 3-fold to 0.15±0.04 (p=0.0007). Using the gas-phase reference spectra, we determined that the reduced RBC-Barrier ratio in PF subjects was attributable partially to a 2.3-fold lower RBC signal (p=0.008), and partially to a 1.4-fold increase in Barrier signal (p = 0.075). As shown in figure 2A, the RBC-Barrier ratio correlated significantly with DLCO (r = 0.86, p =0.001) and also exhibited a modest correlation with subject age. That is, RBC:Barrier ratio diminished in older subjects (r=-0.58, p=0.075).

Conclusions: The RBC:Barrier ratio obtained through 129Xe spectroscopy shows a consistent and reproducible reduction in subjects with pulmonary fibrosis relative to healthy controls. Despite operating on completely different physical principles, 129Xe spectroscopy correlates well with conventional DLCO. However, because 129Xe spectroscopy does not rely on the physical consumption of gases, and is inherently “self-calibrating” by virtue of its 3 distinct resonances, the technique is likely to be less dependent on subject cooperation, and may be more reproducible across clinical sites. Most importantly, this global indicator of alveolar diffusion limitation is now being extended to an imaging metric so that gas-transfer impairment can be visualized regionally.

Acknowledgements: 1R01HL105643, Duke Center for In Vivo Microscopy (NIBIB P41 EB015897)