Interethnic differences in fatty acid composition of deep subcutaneous abdominal adipose tissue

Suresh Anand Sadananthan1,2, Navin Michael1, Melvin K-S Leow1,2, ChinMeng Khoo3, Eric Yin Hao Khoo4, Yung Seng Lee1,4, Peter Gluckman5, ESHyong Tai4, and S. Sendhil Velan1,6

1Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore, 2Department of Obstetrics & Gynaecology, National University of Singapore, Singapore, Singapore, 3Department of Endocrinology, Tan Tock Seng Hospital, Singapore, 4Department of Medicine, National University of Singapore, Singapore, 5Department of Pediatrics, National University of Singapore, Singapore, 6Clinical Imaging Research Centre, A*STAR, Singapore

Introduction. The study of fat distribution is important to understand the pathophysiology of obesity-related disorders, diabetes mellitus and cardiovascular diseases. Several studies have suggested that the fat distribution is different across different ethnic groups [1,2]. In addition to the analysis of fat distribution, the investigation of the fatty acid composition is also important because of their varying metabolic properties and association with insulin sensitivity [3,4]. Differences in the fatty acid composition induced by diet or ethnicity could potentially make some groups more susceptible to metabolic disorders. Studies have shown that the fatty acid composition of the different fat compartments vary between each other. Upper body subcutaneous fat is more saturated than the lower body subcutaneous fat and visceral fat is more saturated than the subcutaneous fat [5]. Deep subcutaneous adipose tissue (DSAT) is more saturated than the superficial subcutaneous adipose tissue (SSAT) and is also more lipolytically active [6]. Kokatnur et al. reported the ethnic differences in the fatty acid composition between black and white men [7]. In this study, we investigated the fatty acid composition in the abdominal deep subcutaneous adipose tissue of three ethnic groups (Chinese, Malays and Indians) non-invasively using magnetic resonance spectroscopy (MRS) approaches.

Methods. The study consisted of 205 healthy male adults (76 Chinese, 62 Malays and 67 Indians), aged 21 to 40 years with BMI 18 to 30 kg/m2. Anthropometric measurements and metabolic profiles were obtained from all subjects. Insulin sensitivity index (ISI) was determined using hyperinsulinemic euglycemic glucose clamp. The spectrum from the adipose tissue was acquired from a 2 × 2 × 2 cm3 voxel placed within the deep subcutaneous fat at the umbilicus level using PRESS sequence (TE/TR = 30/2000 ms, 24 avg) on a 3T MR scanner (Tim Trio, Siemens) (Fig. 1). The peak resonances were fitted and quantified using in-house developed Matlab program (Fig. 1). Each lipid resonance was fitted using a single Gaussian peak. The ratio of the olefinic peak (5.3 ppm) to the methyl peak (0.9 ppm) (unsaturation index, UI) is proportional to the average number of double bonds per fatty acid chain. The ratio of the diallylic peak (2.8 ppm) to the methyl peak (polyunsaturation index, PUI) is proportional to the fraction of polyunsaturated fatty acid content. The ratio of the n-methylene peak (1.3 ppm) to the methyl peak (saturation index, SI) gives a measure of the average number of n-methylene groups per fatty acid chain.

Results. Indians had the highest UI, PUI and SI among the ethnic groups followed by Malays and Chinese. One-way ANOVA analysis of the data from all the three groups showed that UI, PUI and SI were significantly different between the ethnicities. The source of polyunsaturated fats is the dietary intake and the difference explains the significant variation in the diets of the three groups. ISI was highest in Chinese and lowest in Indians. UI showed a significant negative correlation with insulin sensitivity in Chinese (r=-0.32, p<0.005) and Malay (r=-0.31, p<0.05). The unsaturation and saturation indices (UI, PUI and SI) of Chinese were significantly different from Malays and Indians. Malays and Indians had similar levels of UI, PUI and SI.

Conclusion. We have investigated the ethnic differences in the fatty acid composition of deep subcutaneous adipose tissue in Chinese, Malay and Indian men. PUI is strongly correlated to the polyunsaturated fat content in the diet, hence differences in PUI might be a marker for the ethnic differences in the dietary fatty acid composition. Monounsaturated and saturated fatty acids can be synthesized endogenously, hence the differences in UI and SI could potentially be modulated by both diet and ethnicity.