Diffusion Tensor Imaging of Blast Induced Traumatic Brain Injury in Rodent Model
Sanjay K Verma1, Bhanu Prakash KN1, Sankar Serramani1, Envi Mary Kan2, Kian Chye Ng2, Mui Hong Tan3, Jia Lu2, and S Sendhil Velan1,3
1Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore, Singapore, 2Combat Protection and Performance Lab, DSO National Laboratories, Singapore, Singapore, 3Clinical Imaging Research Centre, Agency for Science, Technology and Research, Singapore, Singapore

TARGET AUDIENCE: Scientists and clinicians interested in imaging biomarkers for traumatic brain injuries.

Introduction: Traumatic brain injury (TBI) due to blasts by improvised explosive devices (IEDs), is increasingly seen in several countries. It creates various neuropsychological dysfunctions such as attention deficit, working function, motor skills etc in both animals and humans. In this study, we have investigated the effect of open field blast injuries on rat brain using Diffusion tensor imaging (DTI), which provides the degree as well as directionality of water diffusion in brain [1]. In particular, we studied the major brain structures like the corpus callosum (CC), hippocampus (HC), and cortex (CX).

Methods: 5 kg of 2,4,6-trinitrotoluene (TNT) with a penta-erythritol tetra-nitrate (PETN) booster was detonated at 1 m height in each blast. A metal cage along with the pressure transducer was set up at 3 m from the blast source. All the animals were randomly grouped into 1) Sham: where the subjects were not exposed to blast but anaesthetized; and 2) Blast (with no body armor): where subjects were exposed to a single blast at ~180 kPa at 3 m from the blast source [3]. DTI and high resolution MPRAGE images were acquired on 7T ClinScan (Bruker BioSpin, Germany) equipped with 4 channel RAPID phase array coil before blast (Baseline, BL), and on day 1, 3, 5, 14 and 28 after blast (#Rat = 6). DTI was performed using EPI based DWI sequence (TR/TE/slice thickness/#slice/FOV/matrix size/#direction = 5000 ms/50 ms/1.2 mm/28/36 mm × 28 mm/128×100/ 20). Four averages were acquired with b-factors of 0 s/mm² and 1000 s/mm². MPRAGE images were acquired with TR/TE flip angle/slice thickness/#slice/FOV/matrix size/#average= 2000 ms/1.6 ms/20º/0.5 mm/52/35 mm × 28.44 mm/256×208 (zero filled to 512 × 512)/4. A Java based ImageJ (National Institute of Health, USA) plugin was developed for processing the DTI and ROI analysis. Pixel by pixel computation was performed for the calculation of 3 × 3 diffusion tensor matrix followed by analytic computation of eigenvalues and eigenvectors [1, 4, 5]. The fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD, eigenvalue corresponding to pressure transducer was set up at 3 m from the blast source. All the animals were randomly grouped into 1) Sham: where the subjects were not exposed to blast but anaesthetized; and 2) Blast (with no body armor): where subjects were exposed to a single blast at ~180 kPa at 3 m from the blast source [2].

Conclusions and Discussions: We have performed DTI of blast injuries in rodent model. The increase in FA, AD and decrease in RD at day 1 in CC may be probably due to edema or change in the water content within the myelin sheath [4]. Decrease in the diffusivity in the CX indicates the cytotoxic edema and slight increase at day 28 from day 14 probably due to reduced tissue cellularity [5]. Decrease in the value of MD in HC on day 3 may point to the presence of cytotoxic edema [6, 7].