CLUSTERING OF CONTRAST ESTIMATE PATTERNS OF FMRI TO UNTANGLE GENOTYPIC EFFECTS ON WHOLE BRAIN NETWORKS

Kayako Matsuo1, Chih-Min Liu2,3, Shen-Hsing Annabel Chen1, Aleksandr Aleksandrovič Šimak4,5, Chen-Chung Liu2, Trung-Jeng Hwang2,7, Ming-Hsien Hsieh2, Yi Ling Chien2, Hai-Gwo Hwu2,7, and Wen-Yih Isaac Tseng1,5

1Advanced Biomedical MRI Lab, National Taiwan University College of Medicine, Taipei, Taiwan, 2Department of Psychiatry, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan, 3Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan, 4Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, Singapore, Singapore, 5Functional Neuroimaging Group, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, 6Division of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 7Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

Purpose: As we lack an efficient methodology to obtain veritable genotypic interaction patterns on whole brain activation, we developed a clustering method of contrast estimate values during fMRI of verbal working memory (VWM) in a data-driven manner and observed genetic/epigenetic interactions related to a new gene, NRGI-P1 (rs5622283), which was recently discovered in Taiwan.

Methods: A total of 104 people with schizophrenia (SCH) and healthy controls (CON) (52 each) were studied after obtaining written informed consent. The protocol was approved by the National Taiwan University Hospital institutional review board in adherence to the Declaration of Helsinki. Four groups were classified by disease state and genotype: SCH-C (27 people), SCH-CT (25), CON-C (27) and CON-CT (25), where C indicates C-allele carrier (TTCC), whereas TT indicates TT genotype carrier. Age, handedness score, years of education, reaction time (RT) and accuracy during the VWM performance in the scanner and gender distribution were matched and indicated no significant differences. Age of onset, duration of illness (DOI), chlorpromazine equivalent dose (CPZ) [7] and positive, negative and general scores of PANSS [8] also demonstrated no significant differences between SCH-C and SCH-CT. Scanning was performed using a 3T MR scanner with a 32- or 16-channel phased array coil (Trio Tim, Siemens, Erlangen, Germany). A GRE-EPI sequence was employed for fMRI using the following parameters: TR/TE = 2500 ms/24 ms, flip angle = 90 deg, 43 slices, 3.5 mm thick with no gap interleaved, FOV=240 mm, matrix size 64 x 64, voxel size of 3.75 x 3.75 x 3.5 mm3, and 191 volumes per run (about 8 min). Two runs were administered to each subject. A block-design paradigm of Sternberg VWM was employed with blocks of high (6 letters) or low (1 letter and 5 ‘#’ signs) WM load in alternation for eight cycles [9]. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used for image analyses. After preprocessing, contrast estimates of high>low loads were computed for each subject. A random-effects group statistics was performed including a signal-to-fluctuation-noise ratio (SFNR) as a covariate because of the employment of two types of coils [10]. As a result, we obtained 4 volumes of averaged contrast estimates (‘betas’) corresponding to each subject group. The 4-value patterns from same coordinates of the 4 groups (180840 voxels) were clustered using a k-means clustering algorithm with correlation as the distance measure. The obtained cluster means were normalized to zero with standard deviation of 1. A cluster-specific SPM was conducted entering the cluster means as contrast definition values. A challenge of the current method was how to define the cluster division number for the main analysis. We performed k-means clustering of 2 to 15 cluster divisions and estimated the results by (1) silhouette coefficient, (2) overlapped voxel number between cluster-specific SPMs (p<0.005, k=20; [11]) and (3) inner product between cluster means. We decided to employ cluster division 10 in this analysis (Fig. 2). To examine the characteristics of the obtained clusters, we compared the correlation coefficient between individual summation of contrast estimates within masks of the cluster-specific SPM and the subjects’ parameters including age, gender and PANSS scores.

Results: We extracted clusters of disease effect (CON>SCH, SCH>CON), a cluster of TT>C and a cluster of additive interaction of CON>SCH and C>TT (Fig. 3). Four clusters (C4, 5, 3, 9) demonstrated correlations with age (p<0.01); some of them also showed milder correlations with positive and or general scores in patients (p<0.05). Other 2 clusters (C6, 8) demonstrated those with accuracy (p<0.01).

Discussion: Among the obtained SPMs, those derived from clusters 10, 1 and 2 represented relatively genuine genotypic effects with less influences of age, accuracy and disease state. Specifically, SPM derived from cluster means of the cluster 1 demonstrated a clear TT>C pattern (Fig. 3, 3rd row); the highest peaks were found in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC), which are core networks of the default mode network (DMN). Genotypic effects are thought to manifest themselves in a network-specific manner in the whole brain but the exact patterns are unknown in advance. The patterns were found in the mPFC and the PCC, which are core networks that are interacted with disease state, age, performance accuracy and other epigenetic factors.

Conclusions: The clustering of contrast estimate patterns is a promising data-driven method to investigate genotypic effects on brain networks that are interacted with disease state, age, performance accuracy and other epigenetic factors.

References: