PHOSPHOLIPID AND HIGH-ENERGY PHOSPHATE LEVELS IN MULTIPLE BRAIN REGIONS IN ALZHEIMER’S DISEASE: A 3D 31P-MRSI STUDY

Anne Rijpma1,2, Marinette van der Graaf1,3, Olga Meulenbroek1,3, Rianne de Heus1, Marcel G.M. Olde Rikkert1,2, and Arend Heerschap1

1Geriatric Medicine, Radboud university medical center, Nijmegen, Gelderland, Netherlands, 2Radboud Alzheimer Centre, Radboud university medical center, Nijmegen, Gelderland, Netherlands, 3Radiology, Radboud university medical center, Nijmegen, Gelderland, Netherlands, 4Paediatrics, Radboud university medical center, Nijmegen, Gelderland, Netherlands

Target audience: Researchers and clinicians interested in brain metabolism in Alzheimer’s disease (AD).

Background. Alterations in membrane phospholipid metabolism and energy metabolism in the brain have previously been reported in Alzheimer’s disease (AD). Whereas phospholipids are the main components of cell membranes, and thereby involved in structural integrity, high-energy phosphates are necessary for providing energy to the cell. Furthermore phospholipid metabolism is important for the formation of new and maintenance of existing synapses. In AD, synaptic loss and neurodegeneration follow a distinctive regional pattern during the course of the disease, starting in the hippocampus and progressing to mediotemporal, posterior cingulate and frontal regions. In addition, resting metabolism in the retrosplenial cortex (RSC) as measured by FDG-PET is consistently found to be reduced in AD. Purpose. To assess whether phospholipid and energy metabolism shows regional variation in AD we performed 3D phosphorus Magnetic Resonance Spectroscopic imaging (31P-MRSI) in AD patients.

Methods. 31P MRSI was performed in 17 drug-naïve mild (MMSE ≥20) AD patients, aged 60-86 years. 31P-MRSI spectra were acquired of the whole brain on a Siemens Magnetom Trio 3T scanner with a dual-tuned 1H / 31P volume head coil (RAPID) and a 3D pulse-acquire sequence with the following parameter values: TR=2000 ms, TE=0.10 ms, 40° flip-angle, NA=4, WALTZ4 proton decoupling, nominal voxel size=16x16x16mm). Additional T1-weighted images were segmented (RAPID) and a 3D pulse-acquire sequence with the following parameter values: TR=2000 ms, TE=0.10 ms, 40° flip-angle, NA=4, WALTZ4 proton decoupling, nominal voxel size=16x16x16mm).

Background. Alterations in membrane phospholipid metabolism and energy metabolism in the brain have previously been reported in Alzheimer’s disease (AD). Whereas phospholipids are the main components of cell membranes, and thereby involved in structural integrity, high-energy phosphates are necessary for providing energy to the cell. Furthermore phospholipid metabolism is important for the formation of new and maintenance of existing synapses. In AD, synaptic loss and neurodegeneration follow a distinctive regional pattern during the course of the disease, starting in the hippocampus and progressing to mediotemporal, posterior cingulate and frontal regions. In addition, resting metabolism in the retrosplenial cortex (RSC) as measured by FDG-PET is consistently found to be reduced in AD. Purpose. To assess whether phospholipid and energy metabolism shows regional variation in AD we performed 3D phosphorus Magnetic Resonance Spectroscopic imaging (31P-MRSI) in AD patients.

Results for the planned comparisons are shown in Figure 2 (phospholipids) and Figure 3 (high energy phosphates). Metabolite peak areas were significantly (P<.01) higher in the ACC compared to the RSC for PC, PE, GPE and GPE. Lower metabolite peak areas were significantly lower in the ACC compared to the RSC for PCr. Significant differences in metabolite peak areas between HL and HR were observed for any of the metabolites. MP was not analysed, since 45% of its values were of low quality (CRLB > 30%). There were no significant differences for the metabolites GPE and GPC. The ratios of PME/PDE, PC/GPC and PE/GPE were significantly (P<.01) higher in the ACC compared to both hippocampi and the RSC. The PCr/Ph ratio was significantly predicted by ROI and by gray matter fraction (GM/(GM+WM+CSF)).

Discussion and Conclusion. The pattern of high energy phosphates in the RSC (high PCr, low ATP, Pi and NAD) is in agreement with the expected pattern in AD, whereas the pattern of high-energy phosphates in the ACC (high Pi and NAD, low PCr and ATP) fits the pattern we expect in normal aging. The ACC is a brain region especially vulnerable to age-related hypometabolism, with no evidence of an enhanced decline in AD. The observed variations in the phosphomonoesters, combined with literature findings of increased PME compared to healthy elderly in the frontal cortex, and decreased PME compared to healthy young people in the hippocampus, suggest a compensatory mechanism to restore membrane phospholipids, which is more pronounced in the ACC compared to the hippocampi and the RSC. These data indicate regional differences of phosphorus metabolites in the mild AD brain.

Fig. 1 31P spectrum from a voxel (16x16x16 mm) in the retrosplenial cortex. Spectral fitting was performed with Metabolite Report (Siemens). The raw spectrum (white), the modelled fit (red), the baseline (blue) and the residual (green) are shown.

Fig. 2 Metabolite concentrations of PE, PC, GPE and GPE in the four investigated brain regions. * p<.01.

Fig. 3 Metabolite concentrations of the ATPs, PCr, NAD, and Pi in the four investigated brain regions. * p<.01.