Histogram Analysis of Saturation Time Dependent Amide Proton Transfer MRI in Brain Metastases
Jochen Keupp1, Yuriko Suzuki2, Osamu Togao3, and Takashi Yoshiura1

1Philips Research Europe, Hamburg, Germany, 2Philips Electronics Japan, Tokyo, Japan, 3Department of Clinical Radiology, Kyushu University Hospital, Fukuoka, Japan

Purpose - In recent years, saturation transfer MRI techniques based on endogenous contrast of exchangeable amide protons of intracellular proteins and peptides (amide proton transfer, APT) have been developed successfully and applied in initial clinical studies for oncology and neurology applications. For the analysis of the obtained APT measures, specifically in different tumor types and contralateral normal appearing white matter (NAWM), ROI averages of the magnetization transfer asymmetry (MTR\textsubscript{asym}) are typically used. But tumor tissue is often very heterogeneous and may contain different tissue compartments like the solid tumor, necrosis, edematous or cystic areas. The high spatial resolution of the APT MRI techniques (e.g. 2 mm in plane) allows a detailed analysis of the amide concentrations found within the apparent tumor boundaries. In this work, histogram analyses were performed in an exemplary study in human brain metastases cases. Different durations of the sensitizing RF saturation pulse were chosen to analyze potential differences on a multi-compartment APT signal.

Methods - The study was performed on a 3.0T clinical whole-body scanner (Achieva TX 3.0T, Philips Healthcare, NL) using an 8-channel head coil for signal reception and 2-channel RF transmission via the body coil. Five cancer patients with confirmed brain metastasis from different primary origin (esophageal, urethral, breast) were enrolled, from whom informed consent was obtained. The protocol was approved by the institutional review board. Pulsed RF saturation with an overall duration $T_{\text{sat}} =$ 0.5, 1.0 or 2s was used consisting of 50 ms single lobe sinc-gaussian pulse elements with $B_1,\text{rms}=2.0\mu$T. 100% RF duty cycle was achieved by alternate transmission via two RF channels3. RF shimming was applied for both, image homogeneity (excitation/refocusing pulses) and for saturation homogeneity (amplitude of saturation pulse elements) via a B_1 calibration measurement. 2D fast spin-echo sequences with driven equilibrium refocusing were used: TR/TE=5s/6ms, FOV (230 mm)2, matrix 1682, resolution 1.8×1.8×5 mm3. 25 Z-spectral images S_0, ω=6 to 6 ppm (step 0.5ppm) and S_0 were measured with 2 minutes total acquisition time. B_0 field maps for off-resonance correction were acquired separately (identical geometry, 2D GRE, ΔTE=1ms, TR/TE=15ms/8ms, 16 averages, 33 sec). For B_0 mapping, low gradient strength was used to minimize eddy current effects. The resonance frequency reference and the B_0 shimming were carefully fixed among the APT and B_0 acquisitions. APT maps based on MTR\textsubscript{asym}=[$S(-3.5\text{ppm})-S(+3.5\text{ppm})]/S_0$ were calculated using Z-spectral interpolation for B_0 correction3. Tumor ROIs covering the metastases and contralateral NAWM ROIs were manually defined by a trained radiologist based on the clinical gadolinium contrast-enhanced T1w and T2w images. The APT data was analyzed in histograms (−3 to +10% MTR\textsubscript{asym}, 150 bins), and single-peak as well as multi-peak (2-/3-peak) Gaussian fits were performed on the histogram data.

Results and Discussion – Exemplary histogram data from a brain metastasis patient with primary diagnosis of breast cancer is shown in Figure 1: $T_{\text{sat}}=0.5$ sec (a, d; red), 1.0 sec (b, e; green) and 2.0 sec (c, f; blue). NAWM based MTR\textsubscript{asym} closely follows single-peak Gaussian distributions for any duration (for clarity of the graph, only fits shown for a/b). A nearly single-peak distribution is found for Fig1.d, but with longer duration of the RF saturation, the distributions spread and show for a/b 3 distinguishable components (Fig.1e/f). Fig1.g shows the individual components of a 3-peak fit for $T_{\text{sat}}=2.0$s (f). The center values of the NAWM distributions are clearly diminishing for a longer saturation. The mean values in the tumor ROI are increasing with T_{sat}, and the increase is in particular pronounced for the compartment with highest MTR\textsubscript{asym} values. On the other hand, some compartments with low MTR\textsubscript{asym} remain mostly unchanged resulting in a particular large spread at long T_{sat}. The average findings from all subjects are summarized in Figure 2. While the single-peak values (a) reflect the mean increase of APT signal, the T_{sat} mediated MTR\textsubscript{asym} increase in the 3rd compartment (b) from the multi-peak fit is more pronounced. Initial anatomical correlations indicate, that this compartment is related to protein-rich cystic areas in the metastasis. Overall, a clear gain of APT contrast is observed for increasing RF saturation time. Based on these findings, histogram type analysis is strongly recommended for further investigation of APT contrasts for tumor tissue characterization.