Real-time MRI of Oropharyngeal Swallowing Function: Initial Clinical Results
Shuo Zhang¹, Arno Olthoff², Per-Ole Carstens³, and Jens Frahm¹
¹Biomedizinische NMR Forschungs GmbH, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Lower Saxony, Germany, ²Department of Otorhinolaryngology, University Medical Center, Goettingen, Lower Saxony, Germany, ³Department of Neurology, University Medical Center, Goettingen, Lower Saxony, Germany

Target Audience
Researchers working in the fields of swallowing function, otorhinolaryngology, dynamic MRI, gastrointestinal MRI, neck

Introduction
Swallowing disorders, commonly evaluated with videofluoroscopy or endoscopy, overlap frequently with neurological diseases and result in deglutitive malfunctions. In particular, these two methods either are invasive or have ionizing radiation and limited visualization planes. In this work, a recently introduced real-time MRI technique ¹,² was applied to overcome these problems and to demonstrate the feasibility to assess oropharyngeal function during swallowing.

Materials and Methods
Ten healthy volunteers (28±3 y, 26-35 y) and ten patients suffering from inclusion body myositis, IBM (73±5 y, 58-83 y) were investigated at 3T (Tim Trio, Siemens Healthcare, Erlangen, Germany) in supine position using a combination of a small flexible coil and a bilateral 2×4 array coil (NORAS MRI Products, Hoechberg, Germany). Highly undersampled MRI signals were acquired by spoiled radial FLASH (FOV 192 mm, in-plane resolution 1.5 mm, slice thickness 10 mm, 19 spokes, TR/TE 2.17/1.44 ms, flip angle 5⁰, acquisition times 41.23 ms corresponding to a temporal resolution of 24.3 frames per second, scan time 28 s). T1-weighted real-time MRI movies were obtained using regularized nonlinear inverse reconstruction. For each measurement the subject was instructed to swallow 5 ml thickened pineapple juice, which caused a high signal in the T1-weighted images due to its high concentration of manganese. Individual swallowing events and their quantitative timings (start and end times, durations) were calculated based on the real-time MRI movies.

Results and Discussion
Twelve distinct swallowing events could be quantified by real-time MRI. These included, for example, oro-velar opening (OOT), velo-pharyngeal closure (VCT), epiglottic retroflexion (ERT), esophageal opening (EOT) and pharyngeal transit (PTT), shown in Fig. 1A. The timing analysis unraveled a well-orchestrated temporal pattern of physiological swallowing events, which is referenced to the start of the OOT (not shown here). Patient results indicated abnormalities in the pharyngeal phase including, in particular, decreased epiglottic deflection and pharyngeal muscle propulsion at the upper esophageal sphincter (arrows in Fig. 1B). In addition, durations of OOT and PTT are significantly longer (unpaired t-test $P < 0.05$) than that from the healthy subjects (Fig. 2).

Conclusion
The proposed real-time MRI method demonstrates unique potential for anatomical and functional study of swallowing process and diagnosis of, for example, oropharyngeal dysphagia.

References