Joint Water-fat Separation and Deblurring with Spiral In-out Sampling
Dinghui Wang1, Zhiqiang Li1, Ryan K. Robison1, Nicholas R. Zwart1, Michael Schär1,2, and James G. Pipe1
1Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States, 2Philips Healthcare, Cleveland, OH, United States

Introduction
Spiral imaging with in-out trajectories is efficient for spin echo and T_2^* weighted sequences. Two images can be reconstructed from the spiral-in and spiral-out parts respectively. These two images can then be combined to increase signal to noise ratio or utilized to extract new information. Based on previous work in [1], we propose an iterative approach to simultaneously separate and deblur water and fat using these images.

Theory
Similar to the notation in [1], the blurring is formulated as
\[
\tilde{B}^H \tilde{g} = \tilde{B}^H \tilde{f},
\]
where $\tilde{g} = [g_{in}, g_{out}]$ are the collected images, $\tilde{B} = [B_{inw}, B_{outw}, B_{inf}, B_{outf}]$ represents the blurring process, $\tilde{f} = [f_{water}, f_{fat}]$ are the water and fat images. H denotes the conjugate transpose. \tilde{B} is calculated from a known field map of B_0 inhomogeneity. Eq. 1 is solved by a conjugate gradient approach [1]. The ‘blur’ and the ‘deblur’ processes are implemented by spatially varying convolutions.

Methods
A schematic plot of the spiral in-out readout waveform is shown in Fig.1 (a). A short duration is inserted between the spiral-in and the spiral-out parts for better water-fat separation. The time delay between the sampling points of spiral-in and spiral-out parts that are at the same k-space location varies as the k-space radius changes. As a result, different spatial frequencies converge at different rates, which can cause ringing artifacts. If water and fat are both real at time $t=0$, with a minor modification as $\tilde{g} = [g_{in}^*, g_{out}]^T$, the problem can be seen as an analogy to the echo shifted spiral-out sampling (Fig.1 (b)). To implement this modified approach, we assume that water and fat are in phase at time 0. A slowly varying phase map is estimated from \tilde{f} computed without the water-fat in-phase constraint. This phase is eliminated from \tilde{g}. \tilde{f} is then recalculated with the water-fat in-phase constraint.

Results and Discussion
We tested the proposed approach with data of a canola oil-water phantom and in-vivo data acquired on a 3T Philips Ingenia scanner. The duration between the spiral-in and the spiral-out parts was 0.7 ms. The phantom data were collected with gradient echo stack of spirals (SOS). The data were corrected for B_0 eddy currents before reconstruction [2]. The in-vivo experiment was performed using a turbo spin echo SOS sequence. In both experiments, a field map was obtained [3] from a separate gradient echo SOS data set. The time for the iterative approach was around 1-2 min per coil. We can see the ringing artifacts along sharp boundaries of the water and fat images (Fig.2 (c-d) and Fig.3 (c)). The water-fat in-phase constraint removed these artifacts (Fig. 3 (e)).

Acknowledgement
This work was funded by Philips Healthcare.

References