Iterative Field Map Extraction for Spiral Water-fat Imaging

Dinghui Wang¹, Nicholas R. Zwart¹, Zhiqiang Li¹, Michael Schär¹,², and James G. Pipe¹

¹Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States, ²Philips Healthcare, Cleveland, OH, United States

Introduction: Both B_0 inhomogeneity and chemical shift of fat cause image blurring in spiral imaging. Previous spiral water-fat imaging approaches e.g. [1-2] often assume these two effects are sufficiently separable so that water-fat separation and deblurring can be performed sequentially. The computed field map of B_0 inhomogeneity can be blurred and inaccurate in some regions when using a long readout and/or in the presence of rapidly varying B_0. In this work, we propose two iterative approaches based on a joint water-fat separation and deblurring method presented in [3] to refine the field map.

Methods: In both approaches, the initial field map ΔB_0 is calculated by an analytical three-point Dixon method [4] as shown in Fig. 1. In method 1, we first obtain deblurred water, W, and fat, F [3]. W and F are then blurred back to each TE. The fat fraction P at each TE is used to separate the original images to W and F components. The blurred W and F are then deblurred and summed up to form three deblurred images, which is used to recalculate ΔB_0.

In method 2, two pairs of two TE points are used to separate and deblur water and fat. (W_1, F_1) and (W_2, F_2) should have the same phase with the ideal ΔB_0. Therefore, the phase difference between them is used to adjust the field map. Finally, W and F are recomputed using the refined ΔB_0.

Results and Discussion: Data were acquired using spherical distributed spirals [5] on a 3T Philips Ingenia scanner. Preliminary results suggest the feasibility of both methods (Fig.2-3). Method 1 was more effective when the initial W and F deviate substantially from the true values (Fig.3(c)). The time for three iterations was around 7-10 min per coil. Since the blurring and deblurring employ local convolutions, the reconstruction time is expected to reduce to 3-5 min per coil by applying the algorithms only to focused regions.

Acknowledgement: This work was funded by Philips Healthcare.