EXAMPLE BASED BRAIN MRI SYNTHESIS
Qing He1, Snehashis Roy1, Amod Jog2, and Dzung L Pham1
1Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States, 2Dept. of Computer Science, The Johns Hopkins University, Baltimore, Maryland, United States

Target audience
This work is intended for people who are interested in the methodology or applications of synthetic brain MR images.

Purpose
Most current MR simulation methods1,3 are based on simplifications of MR physics and lack realism in the resulting images. The purpose of this work is to develop an example based simulation method that implicitly learns the physics of the MR acquisition using a patch-based regression. Because the realistic brain MR images are synthesized from a known anatomical model, they are useful for validating image segmentation and other processing algorithms.

Methods
The N3-corrected4 MPRAGE image of a healthy subject from the KKI data set5 is chosen as the atlas image (Fig.1(a)). To prevent the intra/inter-rater variability of manual delineation or any bias towards a single automatic approach, we apply a set of publicly available segmentation algorithms (1.ATROPOS6 2.FAST_no_pve7 3.FAST_pve 4.Freesurfer_EM9 5.SPM9 6.Freesurfer9 7.Lesion_20108 8.LoA11 9.FIRST1). On the skull stripped image and then fuse the segmentation results. Methods 1-5 generate 3-class segmentation labels {1=CSF, 2=GM, 3=WM}, methods 6-8 generate multi-class segmentation labels which are grouped into {1=CSF, 2=cortical GM, 3=WM, 4=subcortical GM}, and method 9 generate labels (ignoring the brainstem) within subcortical GM which are grouped into {4=subcortical GM}. In the segmentation fusion, subcortical GM label is assigned to a voxel if methods 6-9 all classify this voxel as subcortical GM, otherwise, majority-voting on methods 1-8 is used to determine the label. Using the fused segmentation (Fig.1(b)) as initialization, a Fuzzy C-means clustering with membership smoothing13 is applied on the skull stripped image, excluding subcortical GM, where \(I^* = I*(1-M_i) \) is the binary mask of subcortical GM. The resulting three membership images \(S_i = \{1,2,3,4\} \) represent the 4-class segmentation labels and \(T_i = 0 \). Note that subcortical GM is well separated from WM using the above two-phase clustering method. For the non-brain part, there is no strict definition of the anatomical model, and we simply apply a 3-class FCM to generate three membership images (Fig.1(c-f)). A patch based regression ensemble14 was trained to learn the relationship between the atlas image and its seven anatomical membership images at each voxel. The membership images of a given image can be constructed in the same way and used as input for the previously trained regression ensemble to build a new synthetic image.

Results
Fig.2(a) shows the MPRAGE image of another subject in KKI data set. The image synthesized by our method (Fig.2(b)) using the membership images generated from Fig.2(a) is compared with the result from the physics based method1 (Fig.2(c)) using the same membership functions as weights. Visual inspection shows that our result looks almost as realistic as the original image while the physics based simulation looks more artificial. After each image in Fig.2(a-c) is normalized to the intensity range [0,1], the RMS error between our result and the original image is 0.012, while the error between the physics based simulation and the original is 0.075.

Discussion
Besides the demonstrated MPRAGE synthesis, the proposed example based mechanism can be applied to predict other structural image contrasts such as T2-weighted images, as long as those modalities are available for the atlas subject. This method can also be applied to anatomical models derived from manual segmentations.

Conclusion
This work proposes an example-based MR synthesis method. Initial results on MPRAGE synthesis shows our result looks more realistic than a physics based simulation. Further development of the synthesis framework to generate images with varying noise and inhomogeneity levels is to be performed in the future.

References
7. http://fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fsl/list.html
8. http://www.fil.ion.ucl.ac.uk/spm/

Fig.1 (a) atlas MPRAGE image; (b) segmentation fusion result; (c-i) membership images of CSF, cortical GM, WM, subcortical GM and non-brain area

Fig.2 (a) MPRAGE image of a KKI subject; (b) synthetic image using our method; (c) physics based simulation result