Detection of hepatic glycogen by 1D ISIS localized 13C MRS at 7T.

Martin Krssak1,2, Martin Gajdosik2, Ladislav Valkovic2, Wolfgang Bogner2, Michael Krebs1, Anton Lager2, Siegfried Trattnig2, and Marek Chmelik

1Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090, Austria, 2High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Wien, Austria

Purpose: Over 20 years ago 13C MR Spectroscopy has been introduced and validated as the method of choice for the assessment of skeletal muscle and hepatic glycogen content\(^1\). The following applications in metabolic studies focused especially on pathophysiology of type 2 diabetes mellitus\(^2\) and skeletal muscle glycogen consumption during the exercise. However, inherent low sensitivity of 13C MR restrained the volume and/or time resolution of the measurement at lower field strength considerably\(^3\). Localized 1D-CSE has previously been proposed and introduced at B0 of 4T only\(^2\). Increase of observed signal-to-noise ratio and increased spectral resolution at 7T MR Systems promotes especially X-Nuclei MR measurements and 13C MRS of glycogen was already tested in skeletal muscle\(^4,5\). The aim of this study was to implement and test a 13C MRS localization scheme suitable for the measurement of hepatic glycogen at 7T in short acquisition time. One dimensional slice selective version of recently introduced fully adiabatic extended ISIS sequence\(^6\) was proposed and tested for this purpose.

Methods: All measurements were performed using a 7T MR system (Siemens Healthcare, Erlangen, Germany) equipped with a 3He/4He body surface coil (STARK CONTRAST MRI Coils Research, Erlangen, Germany). The surface coil was designed for the application in the abdomen and thorax region and consist of slightly curved 18 cm large transmitter loop with 2 smaller (14 cm) receiver elements combined to quadrature detection operating at 13C resonance frequency (74.73 MHz) as well as Tx/Rx loop of 16 cm for 1H imaging and for proton decoupling (297.2 MHz).

Initial measurements aimed to test the RF-pulse and localization performance of the used sequence and were performed on two compartment phantom (Fig. 1): A small glass sphere (volume of 2.3 cm\(^3\)) containing 0.8 g of 99\% 13C enriched sodium formate was submerged in large plastic container with 1L of 0.9\% saline solution. Another plastic container filled with 1.3L of 25\% naturally 13C abundant glucose solution was placed within the large one in the distance of 2.5 cm from the bottom of the large container. Concentrations of sodium formate and glucose were sufficient to provide enough 13C signals with single pulse acquire scan. The phantom was placed atop the surface coil in the magnet isocenter.

In vivo measurements were performed on three healthy volunteers (2m/1f, age: 34±5 y; BMI= 22±1 kg.m\(^{-2}\)) without any history of liver or other metabolic disease. All volunteers were positioned in the right lateral position with right liver lobe above the coil center and hepatic tissue filling the most of the sensitive volume of the coil.

One dimensional slice selective version of recently introduced fully adiabatic extended ISIS sequence\(^6\) (BW= 20000 Hz, TR= 1s in vivo and 10s on phantom, NA= 256 in vivo and 1 on phantom, Tx/Rx frequency filling the most of the sensitive volume of the coil.

Results and Discussion: Results of the localization performance tests are described in the Fig. 1. Suppression of outer volume signal reached 89 \% in the case of sodium formate and 97\% in the case of 13C glucose signal. In vivo measurements (Fig.2) showed sufficient signal to noise of 13C glycogen in both acquisition. Localized spectra presented with SNR of 3.5±9.9 and CRLBs of 25±2 for the 13C glucose doublet at 100.5 ppm within 4:16min of signal acquisition.

Conclusion: The 1D-ISIS 13C-MRS scheme applied at 7T presented optimal localization performance and sufficient signal to noise in relatively short acquisition times. These gains will be utilized in future metabolic studies focused on the hepatic metabolism in type 2 diabetes and non-alcoholic fatty liver disease.

References: