DOUBLE-RESONANT $^{13}\text{C} / ^{1}\text{H}$ COIL SYSTEM FOR ^{13}C IN VIVO NMR SPECTROSCOPY ON A 7-T WHOLE-BODY MR TOMOGRAPH

Tanja Platt1, Andreas Korzowski1, Reiner Umathum1, and Peter Bachert1

1Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany

INTRODUCTION: ^{13}C NMR spectroscopy (^{13}C MRS) enables noninvasive quantification of various metabolites in vivo with or without enrichment of ^{13}C. High field ^{13}C MRS in combination with ^{1}H-decoupling provides a gain of information and signal in ^{13}C NMR spectra. The aim of this study was to design, implement and test a surface coil system for in vivo 1H-decoupled 13C NMR spectroscopy on an experimental 7-T whole-body MR tomograph. Hence a ^{13}C/^{1}H double-resonant transmit/receive coil system was developed. In order to reduce dielectric losses and capacitive detuning and to impose proper balancing a transmission line resonator (TLR) concept was used. Furthermore specific filters were implemented to decouple both channels properly.

METHODS: The TLR consists of a semi-rigid coaxial cable ($\Omega_{\text{cable}} = 5.5 \text{ mm}$) arranged to a loop ($\Omega_{\text{loop}} = 7.5 \text{ cm}$, fig. 1a+b). A small gap separates its outer conductor into two equal parts. The ^{13}C matching network is located on the left side and the ^{13}C short circuit at the right end of the loop, for ^{1}H the other way round. To achieve adequate electromagnetic decoupling for both channels (^{13}C, ^{1}H) frequency selective filters are implemented. In particular the Chebyshev low pass filter in the ^{13}C channel is very important for the acquisition of 1H-decoupled 13C NMR spectra (fig. 1c+d).

RESULTS: The measured quality factors of the coil are $Q(1\text{H}) = 77$ and $Q(13\text{C}) = 91$. The forward transmission losses S_{21} - low pass filter not included - amount to $S_{21}(13\text{C}, 2\text{H}, 74.73 \text{ MHz}) = -48 \text{ dB}$ and to $S_{21}(1\text{H}, 13\text{C}, 297.15 \text{ MHz}) = -24 \text{ dB}$. The low pass filter performs very well with $S_{21}(74.73 \text{ MHz}) = -0.15 \text{ dB}$ and $S_{21}(297.15 \text{ MHz}) \approx -100 \text{ dB}$. The complete coil design ensures a sufficient electromagnetic decoupling for both frequencies and allows its application in the decoupling mode (^{1}H -^{13}C MRS). Fig. 2 shows the methyl and methylene resonances of triacylglycerides (TAG) in the vegetable oil phantom without and with 1H-decoupling.

CONCLUSION: In this work a home-built ^{13}C/ ^{1}H double-resonant surface coil for in vivo application was developed and implemented on a 7-T whole-body tomograph. Due to optimized frequency filter circuits an acquisition of 1H-decoupled 13C NMR spectra was possible with this coil design. High resolution 13C NMR spectra of a model solution with and without 1H-decoupling were acquired in about 2 minutes. 1H NMR spectra and images can also be obtained with this coil system.

![Fig. 1: (a) Circuit diagram and (b) implementation of ^{13}C/ ^{1}H double-resonant surface coil with $f_{0}(^{13}\text{C}) = 74.73 \text{ MHz}$ and $f_{0}(^{1}\text{H}) = 297.15 \text{ MHz}$, (c) simulated, (d) constructed Chebyshev low pass filter with 4 chambers (bandwidth = 80 MHz, # poles = 7, passband ripple = 1.0 dB, $Z_{\text{in/out}} = 50 \Omega$)](image_url)

The double-resonant coil loaded with a vegetable oil phantom (280 ml) was tuned and matched. The quality factors of the loaded coil and the forward transmission losses S_{21} from one channel to the other were determined with a network analyzer to evaluate the coil. Finally B0-shimmed 13C NMR spectra of the phantom were acquired without and with 1H-decoupling (WALTZ-4) on a MAGNETOM 7 T (Siemens Healthcare, Erlangen, Germany).

RESULTS: The measured quality factors of the coil are $Q(1\text{H}) = 77$ and $Q(13\text{C}) = 91$. The forward transmission losses S_{21} - low pass filter not included - amount to $S_{21}(13\text{C}, 2\text{H}, 74.73 \text{ MHz}) = -48 \text{ dB}$ and to $S_{21}(1\text{H}, 13\text{C}, 297.15 \text{ MHz}) = -24 \text{ dB}$. The low pass filter performs very well with $S_{21}(74.73 \text{ MHz}) = -0.15 \text{ dB}$ and $S_{21}(297.15 \text{ MHz}) \approx -100 \text{ dB}$. The complete coil design ensures a sufficient electromagnetic decoupling for both frequencies and allows its application in the decoupling mode (^{13}C/ ^{1}H MRS). Fig. 2 shows the methyl and methylene resonances of triacylglycerides (TAG) in the vegetable oil phantom without and with 1H-decoupling.

![Fig. 2: B0-shimmed 13C NMR spectra with methyl and methylene resonances of TAG in the vegetable oil phantom (13C FID sequence parameter: 32 avg., TR = 3.5 s, pulse length = 0.12 ms, $\Delta f = 4 \text{ kHz}$, 2048 data points, $U_{\text{pulse}} = 30 \text{ V}$) (a) without decoupling and (b) with 1H-decoupling (WALTZ-4: decoupling duration = 2 ms, DC total duration = 50 %, DC pause duration = 20 %, $U_{\text{WALTZ}} = 60 \text{ V}$)](image_url)

CONCLUSION: In this work a home-built ^{13}C/ ^{1}H double-resonant surface coil for in vivo application was developed and implemented on a 7-T whole-body tomograph. Due to optimized frequency filter circuits an acquisition of 1H-decoupled 13C NMR spectra was possible with this coil design. High resolution 13C NMR spectra of a model solution with and without 1H-decoupling were acquired in about 2 minutes. 1H NMR spectra and images can also be obtained with this coil system.