Multi-component T_2^* mapping in the calf muscle during plantar flexion using a multi-echo radial GRE sequence

Patrick Hiepe1, Martin Krämer1, Alexander Gussew1, and Jürgen R. Reichenbach1

1Medical Physics Group, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital, Jena, Germany

Target audience Researchers in MR physics and muscle physiology

Purpose Recently, muscle functional MR imaging using spin-spin relaxation (T_2) mapping has been proposed to assess muscle fatigue and to investigate pathological changes in muscle diseases [1-3]. However, due to the motion-sensitivity of typically applied sequences, e.g. spin-echo echo planar imaging (SE-EPI), the method is limited to pre- and post-exercise measurements. The aim of the present study was to apply a radial multi-echo gradient-echo (GRE) sequence during dynamic exercising for continuous quantitation of the effective transverse relaxation time constant (T_2^*) enabled by the increased robustness of radial trajectories against motion artefacts [4]. As T_2^* is sensitive to blood volume and oxygenation [5] its continuous monitoring should provide further insights into the mechanisms of muscle fatigue. Therefore, load-induced T_2^*-changes were determined based on mono-exponential and multi-component signal fitting of data obtained in a healthy calf during plantar flexion.

Methods The muscle functional T_2^* study was carried out in a healthy volunteer (male, 24 years old) using a previously described MR compatible pedal ergometer [6]. MR data were collected on a clinical 3 T whole-body MR scanner (TIM Trio, Siemens Healthcare, Germany) using a flexible double-tuned 1H/31P transmit/receive coil (RAPID Biomedical GmbH, Würzburg-Rimpap, Germany). A series of transverse T_2^*-weighted images with linearly increasing echo times (GRE sequence, radial k-space sampling [4], 233 spokes, FOV = 144 × 144 mm², 1.0 × 1.0 mm² in-plane resolution, four 10 mm-thick slices, in-phase $TE_{1-6} = 2.46-14.8$ ms, $\Delta TE = 2.46$ ms, TR = 76.9 ms, TA = 18 sec) was acquired prior to (NAS = 4), during (NAS = 16) and post-exercise (NAS = 20). Spokes acquired during exercise were compared with a corresponding mean baseline spoke using 1D correlation [4]. Spokes yielding a correlation coefficient less than 0.98 during exercise were excluded from this “self-gated” image reconstruction to reduce motion artifacts. Plantar flexion was performed over a time period of 4.8 min resulting in total exhaustion. T_2^*-maps were calculated offline using MATLAB by pixel-wise mono-exponential fitting of the signal decays in the acquired series of T_2^*-weighted images. Median pre- and post-load T_2^*-values were determined based on ROIs of the M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL) and M. soleus (SOL), which were outlined on the first pre-exercise T_2^*-weighted image (slice 3). Non-negative least-squares (NNLS) analysis was performed for the GM by applying multi-component fitting using T_2^*-values in the range of 0.01 ms and 100 ms.

Results Fig. 1 shows multi-slice T_2^*-maps acquired pre, during (NAS = 18) and post exercise (NAS = 20). High in-plane resolution of 1.0 × 1.0 mm² enables a clear distinction of activated muscles from the surrounding tissue. A clear shift toward higher T_2^*-values is visible in GM and GL, whereas T_2^* in the SOL remains nearly constant. Tab. 1 lists the ROI-specific median T_2^*-values pre- and post-load. T_2^*-mapping based on self-gated radial GRE imaging.

Discussion and Conclusion This work demonstrates T_2^*-quantitation in human calf muscles during dynamic exercise by mono- and multi-component fitting, showing the feasibility of muscle functional T_2^*-mapping based on self-gated radial GRE imaging. Although motion related artefacts could not be avoided completely, T_2^*-values clearly increased during and post exercise in muscles stressed during plantar flexion. Future modifications of the exercise protocol may improve image quality during exercise, e.g., by introducing short breaks in the exercise during non-deflected foot position.