Evaluation of MT Asymmetry under Spin-Lock condition in Rabbit Disc and Bovine Cartilage
Wen Ling1, Rob Hartman2, Tao Jin1, Nam Vo2, Gwendolyn Sowa2, James Kang2, Michel Modo1, and Kyongtae Ty Bae1
1Dept. of Radiology, UPMC, Pittsburgh, PA, United States, 2Dept. of Orthopaedic Surgery, UPMC, Pittsburgh, PA, United States

Target Audience: Musculoskeletal radiologists/researchers.

Purpose: To evaluate MT$_{asym}$ (magnetic transfer asymmetry) in cartilaginous tissue, e.g. intervertebral disc, articular cartilage, as a function of RF amplitude/RF duration in a 9.4T scanner.

Theory: gagCEST (Evaluate glycosaminoglycan via Chemical Exchange Saturation Transfer) has been applied in cartilaginous tissue. Its successful application clinically requires accurate knowledge of MT$_{asym}$ in such tissue of interest. Recently, CEST has been conducted through spin-lock (SL) T$_1$ρ technique. Its MT$_{asym}$ can also be accessed in PTR (proton transfer ratio):

$$PTR(\delta) = \frac{M(-\delta) - M(\delta)}{M(\delta)}$$

where $M(\delta)$ is the bulk magnetization when irradiated at chemical shift δ.

Since MT$_{asym}$ originates from interaction with short correlation time, it usually can be accessed in much wider spectral width. In this study, a spectral width of ±30ppm has been evaluated for both disc and cartilage. Since molecular integrity plays essential role in MT$_{asym}$, evaluation of individual component separately will not help address such problem.

Method: Rabbit disc (n=3) and bovine articular cartilage (n=2) were scanned on a 9.4 T Varian scanner equipped with Agilent VNMRJ 3.2 software. The SL approach with Various ω_1/duration pairs (Fig.1a,1b) were applied on rabbit disc and bovine articular cartilage. The saturation offsets varies from -30 ppm to 30ppm with a step of 0.5 ppm. Thk = 1mm, TR/TE = 3000ms/7ms.

Results & Discussion:
Several pair (ω_1/duration) of commonly applied CEST parameters have been tested on both rabbit disc and bovine cartilage. In disc, the most visual MT$_{asym}$ appears at 0.47μT/2000ms. As power increases and duration shortens, MT$_{asym}$ stabilizes at less than -1% (Fig.1a, blue line: 4.22μT/300ms), and it stretch beyond 30ppm. For cartilage, MT$_{asym}$ does not appear at 0.47μT/2000ms. At 3.75μT/300ms, it also stabilize at less than -1% around 30ppm (Fig.1b, blue line). The slight different behavior may come from the different collagen type I (predominantly in nulcous pulposus of disc) and type II (predominantly in cartilage). Our results of cartilage is consistent with the previous report from Lee JS et al, which is also ~1% with RF amplitude of ~2μT at 11.2T machine.

Conclusion: The MT$_{asym}$ effect in both cartilage and disc tends to be stabilized at less than 1% in both bovine cartilage and rabbit disc as RF amplitude reaches at ~4μT. Whether or not he progression of disease has any effect on MT$_{asym}$ should be further evaluated.

Reference: