T2* value change of Hoffa’s fat pad with histologic correlation in a rat model of anterior cruciate ligament transection

Chao-Ying Wang1, Ping-Huei Tsai2,3, Shih-Wei Chiang4, Yi-Chih Hsu5, Heng-Sheng Lee6, Yue-Cune Chang5, Ming-Chung Chou1, Ming-Huang Lin3,
Chien-Yuan Lin5, Hsiao-Wen Chung2, and Guo-Shu Huang7

1Department of Radiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, 2Imaging Research Center, Taipei Medical University, Taipei, Taiwan, 3Department of Medical Imaging, Taipei Medical University, Taipei, Taiwan, 4Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, 5Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, 6Department of Mathematics, Tamkang University, Taipei, Taiwan, 7Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan, 8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Purpose
The infrapatellar fat pad (often known as Hoffa’s pad) is a soft tissue that lies underneath the patella and helps to protect the knee like a shock absorber. The anterior cruciate ligament (ACL) attaches proximally at the femoral condyle, and runs distally to the anterior tibia to provide the stability of the knee joint. When the deficiency of ACL occurs, instability of the knee joint causing stretching and impingement of the fat pad between the femur and tibia may induce Hoffa’s fat pad injury. Thus, we try to use MR T2* measurement and histologic correlation to investigate the MR signal alternations of Hoffa’s fat pad after anterior cruciate ligament transection (ACLX) in a rat model.

Materials and Methods
Eighteen male Sprague Dawley rats were randomly separated into three groups (n=6 each group). Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the Hoffa’s fat pad of all rats at 0, 4, 13, and 18 weeks after surgery. After the image acquisition was completed, all data were calculated the mean values of the signal intensity, regions of interest (ROIs) were drawn manually on the infrapatellar fat pad by referencing to the first-echo T2* image(Figure 1). Generalized Estimating Equation (GEE) multiple linear regression was used to assess the interaction of groups or side with time (0, 4, 13, and 18 weeks). P values <0.05 were regarded as statistically significant. The rats were sacrificed following imaging at week 18 to take histological analysis and correlation.

Results
In the ACLX group, we observed that T2* values increased significantly in infrapatellar fat pad of right knee from 13 weeks as compare with left knee (T2* value is 20.32±1.05, 15.42±2.02msec respectively. Hoffa’s fat pad T2* values were significantly higher at 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.05). The T2* value increase were not significant between normal and shame groups(Figure 2. A to C).

Discussion
Previous study showed patients with tears of ACL may have different patterns of joint instability and generate lesions of Hoffa’s fat pad. In our animal study, we found an evidence to show increased T2* in the fat pad during progression of the ACL transection. Histologic examination confirmed the presence of corresponding changes. The increase in the T2* of the fat pad is probably the result of the characteristic small vessel proliferation with mild myxoid change reflecting increased water content within the structures(Figure 2. D).

Conclusion
Quantitative MR T2* measurements of Hoffa’s fat pad are feasible. Signal intensity change in T2* over time in Hoffa’s fat pad was addresses in this study. This information could be potentially useful for in vivo monitoring of knee instability.

Reference