Validity of skeletal age assessment based on phalanges using a portable MRI

Yasuhiro Terada1, Shinya Ihamura1, Katsumi Kosel, Ryo Miyaga2, Yasunari Fujinaga2, and Hiroshi Yoshioka2

1Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan. 2Department of Radiological Sciences, University of California Irvine, Orange, CA, United States

INTRODUCTION
Skeletal age is often evaluated by assessing the maturity of 13 bones in the left hand and wrist. Although plain radiography has been the gold standard for the skeletal age assessment, MRI has recently emerged as an alternative because of its noninvasive nature. In a previous study, we developed a portable hand scanner with a small permanent magnet [1], which requires no shielding room, occupies only a small fraction of the space, and enables skeletal age examination in remote place. However, the available FOV size of the portable MRI is limited and it requires more than one scans to image all the bones necessary for the skeletal age assessment. In this study, we limit the target bones to phalanges which can be imaged in one scan, and assess the skeletal age based on MR images of the phalanges alone. The simplification of the protocol can save scan time and effort for both examination and rating, and would reduce errors from motion artifact in skeletal age assessment.

MATERIALS AND METHODS
A portable system consisted of a C-type Nd-Fe-B permanent magnet (Neomax Engineering, Tokyo, Japan; field strength = 0.306 T, gap width = 8 cm, sizes = 27 × 39.2 × 31 cm², weight = 135 kg, and homogeneity = 8.5 ppm over 8 × 8 × 4 cm² DEV) (Fig. 1a), a solenoid RF probe, a gradient coil set, a shim coil, and an MRI console. A total of 78 healthy children aged from 3.4 to 15.6 (mean 9.5, 53 boys and 25 girls), were recruited from the local community. Written informed consent was obtained from both the child and one of the parents. All MRI measurements were performed under the approval of the ethical committee of our institute. A 3D coherent gradient-echo sequence (dwell time = 20 μs; TR/TE = 40/11 ms; FA = 60°; matrix size = 256 × 128 × 16; FOV = 10 × 10 × 2.5 cm², total acquisition time = 1 min 22 s) was used for imaging phalanges. Skeletal age was rated independently by two raters (an orthopedic surgeon A and a radiologist B) who were blinded to the children's age, according to the Tanner–Whitehouse (TW2) Japan RUS system (RUS stands for radius, ulna and the 11 short bones in rays 1, 3 and 5) (Assessment of Skeletal Age Assessment, ISMRM Proc. 2761 (2013). [2] Y. Terada et al., Development of a Portable Wrist MRI for Skeletal Age Assessment, ISMRM Proc. 2761 (2013). [2] Y. Terada et al., Skeletal Age Assessment Using a New Dedicated Hand MRI System for Young Children, ISMRM Proc. 1685 (2013).)

RESULTS AND DISCUSSION

Figures 2 shows examples of MR images acquired with the portable scanner. Seven assessable bones (epiphyses) were clearly imaged. Figure 3 shows skeletal age rated using images acquired with the portable MRI as a function of chronological age. The correlation between the skeletal age and chronological age was high (Pearson’s $R = 0.899$ for A1, $0.882$ for A2, and $0.933$ for B). The interrater and intrarater reproducibilities were also high ($R = 0.937$ (A1 vs. A2), $0.919$ (A1 vs. B), and $0.922$ (A2 vs. B). The rated skeletal ages were compared with those based on images of all bones acquired with the hand MRI (Fig. 4). Although the correlation between the skeletal ages rated with the two methods was not low, there was a significant difference, especially for young subjects aged below 10. Indeed, the mean skeletal age younger than 10 with portable MRI was obviously high (portable(A1)-hand(A) = $0.68±0.37$ years, portable(A2)-hand(A) = $1.06±0.40$, and portable(B)-hand(B) = $0.84±0.32$).

Fig. 1. (a) Portable MRI with a 0.3 T permanent magnet (135 kg). (b) Hand MRI with a 0.3 T permanent magnet (450 kg).

Fig. 2. MR images acquired with portable MRI. (left: 7.7 years, girl; right: 10.4 years, girl).

Fig. 3. Skeletal age rated from MR images acquired with portable MRI as a function of chronological age.

Fig. 4. Comparison of skeletal ages rated using phalanges imaged with portable MRI and those rated using all bones imaged with hand MRI.

Fig. 5. Mean of difference in skeletal age simulated using different pairs of bones. The bones used for rating were colored in pink. The pattern VI corresponds to phalanges which could be imaged with portable MRI. The error bar corresponds to 95% confidence intervals.

Fig. 5. Mean of difference in skeletal age simulated using different pairs of bones. The bones used for rating were colored in pink. The pattern VI corresponds to phalanges which could be imaged with portable MRI. The error bar corresponds to 95% confidence intervals.