A role for DCE MRI in predicting tumor radiation response
Rami Hallac1,2, Heling Zhou1, Rajesh Pidikiti3,4, Kwang Song3,5, Strahinja Stojadinovic3, Dawen Zhao1, Vikram Kodibagkar1,6, Peter Peschke7, Timothy Solberg3,8, and Ralph Peter Mason1
1Radiology, UT Southwestern, Dallas, TX, United States, 2Children’s Medical Center, Dallas, TX, United States, 3Radiation Oncology, UT Southwestern, Dallas, TX, United States, 4MD Anderson, TX, United States, 5Henry Ford Hospital, MI, United States, 6Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States, 7German Cancer Center, Heidelberg, D-69120, Germany, 8Univ Pennsylvania, PA, United States

Audience: Researchers and clinicians interested in noninvasive biomarkers for predicting tumor response to radiation

Introduction: It has been long appreciated that hypoxic tumors are more resistant to radiotherapy (Int. J. Radiat. Biol. 2006;82:699). Various methods have been described to assess tumor oxygenation including electrodes, 19F MRI and oxygen enhanced MRI (BOLD and TOLD). There have also been various reports that parameters associated with Dynamic Contrast Enhanced (DCE) MRI are related to radiation response (Int. J. Radiat. Oncol. Biol. Phys. 2002;54:759; Radiother. Oncol. 2012;102:429). Several reports have compared DCE parameters with surviving fraction in culture following irradiation of tumors in vivo. We have now evaluated correlations between DCE MRI and tumor growth delay following radiation of the well characterized syngeneic Dunning prostate rat tumor R3327-AT1.

Methods: Ten male Copenhagen rats were implanted subcutaneously in the thigh with Dunning R3327-AT1 tumors and MRI studies conducted on a horizontal bore 4.7 T magnet two to five weeks later. Rats were anesthetized (isoflurane/oxygen) and T1 maps were acquired using a spin echo sequence (SEMS). Time course DCE data were then acquired using a spin echo sequence with a TR/TE of 200/15 ms pre and up to 30 mins following injection Gd-DTPA (Magnevist®; 0.1 mmol/kg body weight IV). DCE data were analyzed using the approach of Faranesh and Yankeelov (Phys. Med. Biol. 2008;53:2617) to calculate Ktrans and Ve, whereby muscle provides a reference tissue, thus avoiding the need for the arterial input function (AIF). The following day, eight tumors were irradiated with a single high dose of 30 Gy (half the reported TCD50; Int. J. Radiat. Oncol. Biol. Phys. 2011;79:239), while animals breathed air (n=4) or oxygen (n=4) using a dedicated small animal x-ray irradiator (XRAD 225Cx), while two served as non-irradiated controls. Tumor growth was monitored and compared with pre-irradiation DCE assessments.

Results: Both Ktrans and Ve maps showed considerable heterogeneity. Irradiation caused significant tumor growth delay and T4 (the time for tumor volume to quadruple) ranged from 28 to 75 days, as compared to non-irradiated tumors (T4 ~8 days). The rats breathing oxygen during tumor irradiation generally exhibited a greater tumor growth delay, but there was overlap between the groups and it was not significant (p<0.081) emphasizing the importance of individual measurements. No obvious correlation was observed between tumor growth delay and vessel permeability (Ktrans). However, strong correlation between extravascular-extracellular volume fraction (ve) and T4 was observed in both air and oxygen breathing groups (R²>0.7).

Conclusion: A strong correlation was observed between Ve and tumor growth delay, irrespective of the inhaled gas during irradiation. It was not possible to dichotomize the sub-populations as reported recently with respect to oxygen enhance MRI (DOI 10.1002/mrm.24846), but the trend was quite remarkable. Since contrast is part of most radiological examinations, it would appear that high temporal resolution DCE MRI could provide predictive insight into response to radiation. It should be noted that this study used a single high dose irradiation and this is becoming increasingly relevant as radiation oncology practice moves towards hypofractionated (SBRT) regimens.

Supported in part by R01 CA139043, P41 EB015908 & P30 CA142543