Targeting choline phospholipid metabolism: GDPD5 and GDPD6 silencing decreases breast cancer cell proliferation and invasion

Maria Dung Cao1,2, Menglin Cheng2, Lu Jiang2, Tiffany R Greenwood2, Balaji Krishnamachary2, Zaver M Bhujwalla2, Tone F Bathen1, and Kristine Glunde2,3

1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States, 3Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States

TARGET: Researchers interested in finding new targets for treatment of breast cancer and the biological effects of targeting cancer metabolism.

INTRODUCTION: As choline phospholipid metabolism has been shown to be associated with tumor malignancy and treatment response, the genes and enzymes regulating this pathway are interesting potential targets for treatment of breast cancer. We have demonstrated that the glycerophosphodiester phosphodiesterase GDPD5 is partially responsible for the relatively low glycerophosphocholine (GPC) levels in human breast cancer cells and human breast tumors [1]. In a recent study, GDPD6 has been shown to be involved in cell migration and metastasis [2]. Our purpose was to investigate the biological effects of targeting GDPD5 and GDPD6 for treatment of breast cancer.

METHODS: Down-regulation of GDPD5 and GDPD6 was performed by lipofectamine 2000 (Invitrogen) mediated transient transfection of small interfering RNA (siRNA) in weakly malignant human MCF-7 and highly malignant human MDA-MB-231 breast cancer cells. Non-targeted (scrambled) siRNA was used as a control. The knockdown efficiency of GDPD5 and GDPD6 was assessed by qRT-PCR using iCycler (Bio-Rad) and iQ SYBR Green (Quanta BioSciences). Quantitative, fully relaxed high resolution 1H MR spectra of the water-soluble extracts were measured on a Bruker Avance 500 MR Spectrometer, and analyzed using the MestReC 4.9.9.6 software as previously described [3]. DNA laddering assay was performed using Apoptotic DNA Ladder Kit (Roche) and cell proliferation was monitored using Cell proliferation Reagent WST-1 (Roche). Cell invasion assay was performed using Transwell (CORNING) coated with 15ug/cm2 Collagen1. Growth medium with 10% FBS was used as chemoattractant.

DISCUSSION and CONCLUSIONS: GDPD5 and GDPD6 down-regulation in breast cancer cells resulted in increased GPC levels, suggesting that these genes are involved in the regulation of cellular GPC level. Our study shows that GDPD5 and GDPD6 siRNA treatment did not cause apoptosis. In a recent study, GDPD6 siRNA was shown to decrease proliferation [2]. In this study, we observed a significant decrease in cell proliferation of MCF7, but not MDA-MB-231 at 72 hours of GDPD6 siRNA treatment. Interestingly, GDPD5 silencing resulted in decreased cell proliferation in both cell lines at 72 hours. The effect of GDPD5 siRNA on cell proliferation was more severe in the less malignant breast cancer cell line. Cell invasion was also affected by GDPD5 and GDPD6 down-regulation. Lower cell invasion was observed in GDPD5 compared to GDPD6 siRNA treated cells. Further investigation of the molecular and metabolic effects of GDPD5 and GDPD6 silencing alone or combined are necessary to uncover their roles in choline metabolism and malignancy of breast cancer. We are currently investigating the association between the GDPDs and breast cancer recurrence and survival in patients.