Multi Slice-Group Slice-Accelerated Breast Diffusion MR Imaging on 3T
Sinyeob Ahn1, Himanshu Bhat1, Dorota Wisner2, Kawin Setsompop3, Thomas Benner4, Stephen Cauley5, Borjan Gagoski1, Bonnie Joe2, Gerhard Laub1, and Vibhas Deshpande1
1Siemens Healthcare, San Francisco, CA, United States, 2Radiology and Biomedical Engineering, UCSF, CA, United States, 3Radiology, MGH, MA, United States, 4Siemens Healthcare, Erlangen, Germany, 5Children’s Hospital, Boston, MA, United States

Introduction
Breast diffusion MRI has been used to provide good lesion characterization using the apparent diffusion coefficient (ADC)1,2. Breast diffusion imaging is typically practiced with an axial slice orientation and FOV of approximately 35–40 cm L-R. When a large FOV is used in an axial orientation, there may be significant B0 field inhomogeneity and nonlinearity in the readout direction (L-R) that can confound the EPI phase correction. If the phase correction is inaccurate, EPI images will show ghosting artifacts. To minimize the phase correction problem, a sagittal slice orientation may be a good alternative in which all the slices are equidistant along the phase-encode (PE) direction4.

Materials and Methods
Two patients were scanned on a wide-bore 3T Magnetom Verio (Siemens Medical Solutions) with a 16-channel breast coil (Hologic). A single-shot (SS)-EPI sequence was used for acquiring the diffusion images, one with a standard and the other with the slice-accelerated technique (MB=2) for comparison. For the standard diffusion technique, only one breast was imaged. For the slice-accelerated technique, two slice groups were positioned, one group on the left breast and the other set on the right breast. Typical separation of the two slice groups was approximately 15 cm. The matching slice numbers in both groups (Fig. 1) were excited simultaneously using an optimized multiband RF pulse. The reference scan was acquired in one extra TR in the slice-accelerated sequence. The protocol parameters were as follows: FOV = 150x200 mm, matrix = 82x110 (resolution = 1.8x1.8x2.4 mm), 7/8 partial Fourier, GRAPPA 2, 1568 Hz/pix bandwidth, 3-scan trace (b=0 and 800 sec/mm2), PE direction: P-A, coronal posterior saturation. For standard EPI: TE/TR= 72/10000 msec, unilateral (39 slices for one breast only), 6 averages, total scan times 4:30 min and for the slice-accelerated EPI: MB=2, slice separation as needed, TE/TR= 73/10000 msec, 78 slices (39 slices in each slice group), 5 averages, total scan time=4:29 min. For image assessment, data were reviewed by an experienced board-certified radiologist to evaluate the likeness of the slice-accelerated images as compared to the standard. Shim volume for the slice-accelerated sequence was set to cover the two slice groups and that for the standard EPI was set to cover one breast imaging volume.

Results
Fig. 2 shows the comparison of images from the two techniques. Slice-accelerated diffusion imaging produced nearly identical image quality as compared to the standard imaging technique. The scan times of the two sequences are almost identical, but the slice-accelerated scan has double the slice coverage of the standard scan (78 slices as compared to 39). Relative SNR of the standard diffusion imaging sequence was slightly higher than that of the slice-accelerated imaging sequence (STD: 71.5 vs. MB=2: 68.9 from 5 representative sagittal slices). Radiologist evaluated that the only appreciable difference between the two acquisition methods was a slight improvement in overall signal using the slice-accelerated technique and otherwise, image quality was rated identical.

Discussions and Conclusion
In this study, we present a multiple slice group, sagittal bilateral slice-accelerated diffusion imaging technique for improved breast diffusion image quality and reduced scan time. Scan time of the slice-accelerated technique (MB=2) is a little more than half that of the standard diffusion technique because of the additional calibration scan that is required for estimation of the coil sensitivities. The difference in the shim volumes between the standard scan (covering only one breast) and the slice-accelerated scan (covering both breasts) was found to have negligible effect on the image quality. In conclusion, the slice-accelerated sagittal bilateral breast diffusion imaging technique may be a viable tool for breast lesion characterization within reasonable scan time (<5 min).

References